The Capability of Mangrove Charcoal in Adsorption Process of Indigosol Substance in Wastewater of Batik Industry
Abstract
The development of the textile industry has had a positive impact on economic growth in Indonesia. Batik is one of the products of the textile industry that is proliferating in Indonesia. Dyes are the main ingredients in the textile and batik industrial process. One of the dyes used is indigosol, and about 15% of the total dyes used will result in industrial liquid waste. The presence of these dyes can damage the water and soil ecosystems. Liquid sewage treatment is needed to minimize the amount of contamination against groundwater and surface water. A standard method used in the handling of liquid waste is by adsorption process with various adsorbents. Commonly used adsorbents are silica gel, activated alumina, zeolite, polymer, and activated carbon. Activated charcoal from mangroves becomes an alternative to natural adsorbents with a large surface area. The ability of activated charcoal as an adsorbent was the focus of this study, both by the activation process by Fe cations and the addition of hydrogen peroxide activators. Characterization using a UV-Vis spectrophotometer is performed to see changes in indigosol concentration during the adsorption process. Results have shown that charcoal with Fe and H2O2 give a better performance on adsorption of indigosol than pure charcoal. Removal of indigosol by charcoal + Fe and H2O2 can reach 51%.
Keywords
Full Text:
PDFReferences
Ademiluyi, F. T., David-West, E. O. 2012. Effect of Chemical Activation on the Adsorption of Heavy Metals Using Activated Carbons from Waste Materials. ISRN Chemical Engineering. 2012. 1–5.
Aishwariya, S., Jaisri, J. 2020. Harmful Effects of Textile Waste. Fibre2Fashion. 24(July). 34–36.
Ali, R. M., Hendrawati, T. Y., Fithriyah, N. H. 2020. Pengaruh jenis adsorben terhadap efektifitas penurunan kadar timbal limbah cair recycle aki bekas. Jurnal Teknologi. 12(1): 87–92.
Aljeboree, A. M., Alkaim, A. F., Al-Dujaili, A. H. 2015. Adsorption Isotherm, Kinetic Modeling and Thermodynamics of Crystal Violet Dye on Coconut Husk-Based Activated Carbon. Desalination and Water Treatment. 53(13): 3656–3667.
Amelia, S., Rahmadani, W., Amalia, L. R., Mufrodi, Z. 2019. Degradation of Surfactant Waste of Leather Tanning Using Fe2O3/Activated Carbon Catalyst. Majalah Kulit, Karet, Dan Plastik. 35(2). 49.
Amelia, S., Sediawan, W. B., Mufrodi, Z., & Ariyanto, T. 2019. Modification of Iron Oxide Catalysts Supported on the Biomass Based Activated Carbon for Degradation of Dye Wastewater. Jurnal Bahan Alam Terbarukan. 7(2): 164–168.
Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., Hill, J. P. 2012. Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan. 85(1): 1–32.
Bansal, R. C., Goyal, M. 2005. Activated Carbon Adsorption. CRC Press.
Bulut, Y., Aydin, H. 2006. A kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination. 194(1–3): 259–267.
Cano, F. 2015. Kinetics and Thermodynamics of Lead Adsorption from Aqueous Solutions Onto Iranian Sepiolite and Zeolite. International Journal of Environment Research. 9(3): 1001–2010.
Cao, Y., Wang, K., Wang, X., Gu, Z., Ambrico, T., Gibbons, W., Fan, Q., Talukder, A. A. 2017. Preparation of active carbons from corn stalk for butanol vapor adsorption. Journal of Energy Chemistry. 26(1): 35–41.
Derakhshan, Z., Baghapour, M. A., Ranjbar, M., Faramarzian, M. 2013. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies. Health Scope. 2(3): 136–144.
Gürses, A., Karaca, S., Doǧar, Ç., Bayrak, R., Açikyildiz, M., Yalçin, M. 2004. Determination of Adsorptive Properties of Clay/Water System: Methylene Blue Sorption. Journal of Colloid and Interface Science. 269(2): 310–314.
Herfiani, Z. H., Rezagama, A., Nur, M. 2017. Pengolahan Limbah Cair Zat Warna Jenis Indigosol Blue (C . I Vat Blue 4) Sebagai Hasil Produksi Kain Batik Menggunakan Medtode Ozonasi dan Adsorpsi Arang Aktif Batok Kelapa Terhadap. Jurnal Teknik Lingkungan. 6(3): 1–10.
Ilomuanya, M., Nashiru, B., Ifudu, N., & Igwilo, C. 2017. Effect of pore size and morphology of activated charcoal prepared from midribs of Elaeis guineensis on adsorption of poisons using metronidazole and Escherichia coli O157:H7 as a case study. Journal of Microscopy and Ultrastructure. 5(1): 32.
Khataee, A. R., Kasiri, M. B. 2010. Photocatalytic Degradation of Organic Dyes in The Presence of Nanostructured Titanium Dioxide: Influence of The Chemical Structure of Dyes. Journal of Molecular Catalysis A: Chemical. 328(1–2): 8–26.
Lavrenko, V. A., Podchernyaeva, I. A., Shchur, D. V, Zolotarenko, A. D., Zolotarenko, A. D. 2018. Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases. Powder Metallurgy and Metal Ceramics. 56(9–10): 504–511.
Ma, Y., Gao, N., Chu, W., Li, C. 2013. Removal of Phenol by Powdered Activated Carbon Adsorption. Frontiers of Environmental Science and Engineering. 7(2): 158–165.
Maryudi, M., Amelia, S., Salamah, S. 2019. Removal of Methylene Blue of Textile Industry Waste with Activated Carbon Using Adsorption Method. 19(4): 168–171.
Minahasa, C. S., Rampe, M. J., Tiwow, V. 2018. Fabrication and Characterization of Activated Carbon from Charcoal Fabrication and Characterization of Activated Carbon from Charcoal Coconut Shell Minahasa, Indonesia.
Mozammel, H. M., Masahiro, O., Bhattacharya, S. C. 2002. Activated Charcoal from Coconut Shell Using ZnCl2 Activation. Biomass and Bioenergy. 22(5): 397–400.
Mukimin, A., Zen, N., Purwanto, A., Wicaksono, K. A., Vistanty, H., Alfauzi, A. S. 2017. Application of a full-scale electrocatalytic reactor as real batik printing wastewater treatment by indirect oxidation process. Journal of Environmental Chemical Engineering. 5(5): 5222–5232.
Ndi, N., J., Ketcha, M. J. 2013. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by ZnCl2 on Methylene Blue. Journal of Chemistry. 2013.
Nugroho, S., Tri, A., Wahyuni, S. 2013. Elektrodegradasi Indigosol Golden Yellow Irk Dalam Limbah Batik Dengan Elektroda Grafit. Indonesian Journal of Chemical Science. 2(3).
Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. 2018. Facile Green Synthesis of Fe 3O4 Nanoparticles Using Aqueous Leaf Extract of Zanthoxylum Armatum DC. for Efficient Adsorption of Methylene Blue. Journal of Asian Ceramic Societies 6(2): 145–155.
Sahara, E., Permatasaari, D. E., Suarsa, I. W. 2019. Pembuatan dan Karakterisasi Arang Aktif dari Batang Limbah Tanaman Gumitir dengan Aktivator ZnCl2. Jurnal Kimia, 13(1): 95.
Setyawati, H., Rakhman, N., Anggorowati, D. 2015. Penerapan Penggunaan Arang Aktif Sebagai Adsorben Untuk Proses Adsorpsi Limbah Cair di Sentra Industri Tahu Kota Malang. Spectra. XIII(26): 67–78.
Sivachidambaram, M., Vijaya, J. J., Kennedy, L. J., Jothiramalingam, R., Al-Lohedan, H. A., Munusamy, M. A., Elanthamilan, E., Merlin, J. P. 2017. Preparation and Characterization of Activated Carbon Derived from The: Borassus Flabellifer Flower As An Electrode Material for Supercapacitor Applications. New Journal of Chemistry. 41(10): 3939–3949.
Wanchanthuek, R., Thapol, A. 2011. The Kinetic Study of Methylene Blue Adsorption Over MgO from PVA Template Preparation. In Journal of Environmental Science and Technology. 4(5): 552–559.
Wang, S. G., Gong, W. X., Liu, X. W., Yao, Y. W., Gao, B. Y., Yue, Q. Y. 2007. Removal of Lead(II) from Aqueous Solution by Adsorption onto Manganese Oxide-Coated Carbon Nanotubes. Separation and Purification Technology. 58(1): 17–23.
Widjajanti, E., Tutik, R., Utomo, M. P. 2011. Pola Adsorpsi Zeolit Terhadap Pewarna Azo Metil Merah dan Metil Jingga. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 115–122.
Refbacks
- There are currently no refbacks.