PARAMETER INTERAKSI BINER KESETIMBANGAN UAP-CAIR CAMPURAN ALKOHOL UNTUK OPTIMASI PROSES PEMURNIAN BIOETANOL

Asalil Mustain, Anang Takwanto, Dhoni Hartanto

Abstract

In this work, the binary interaction parameters of vapor-liquid equilibrium for the mixtures of primary alcohols (methanol, ethanol, 1-propanol or 1-butanol) with C5 alcohols were obtained. A total of 15 systems that consisted of isobaric vapor-liquid equilibrium data at atmospheric pressure were selected. The binary interaction parameters were determined as temperature function by correlating the selected vapor-liquid equilibrium data using the Wilson, Non-Random Two-Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models. The binary interaction parameters were described as the temperature-dependent to increase the capability of the parameters for the application in wide range of temperature. The correlation showed good results because the root mean square deviation (RMSD) between the calculation values and experimental data were relatively low. The obtained parameters were very useful for optimizing the distillation column in the bio-ethanol purification process.

Keywords

Bioetanol; desain; kesetimbangan uap-cair; parameter interaksi biner; pemurnian

Full Text:

PDF

References

Abrams, D.S. dan Prausnitz, J.M., (1975), Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE J., 21, hal. 116-128.

Aucejo, A., Burguet, M.C., Monton, J.B., Munoz, R., Sanchotello, M. dan Vazquez, M.I., (1994), VaporLiquid Equilibria for Systems of 1-Butanol with 2-Methyl-1-butanol, 3-Methyl-1-butanol, 2-Methyl-2-butanol, and 3 Methyl-2-butanol at 30 and 100 kPa, J. Chem. Eng. Data, 39, hal. 271-274.

Bondi, A., (1968), Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York.

Cardona, C.A., Quintero, J.A. dan Paz, I.C., (2010), Production of Bioethanol from Sugarcane Bagasse: Status and Perspectives, Bioresour. Technol., 101, hal. 4754-4766.

Dias, T.P.V.B., Fonseca, L.A.A.P., Ruiz, M.C., Batista, F.R.M., Batista, E.A.C. dan Meirelles, A.J.A., (2014), VaporLiquid Equilibrium of Mixtures Containing the Following Higher Alcohols: 2-Propanol, 2-Methyl-1-propanol, and 3-Methyl-1-butanol, J. Chem. Eng. Data, 59, hal. 659-665.

Duran, J.A., Crdoba, F.P., Gil, I.D., Rodrguez, G. dan Orjuela, A., (2013), VaporLiquid Equilibrium of the Ethanol + 3-Methyl-1-butanol System at 50.66, 101.33 and 151.99 kPa, Fluid Phase Equilib., 338, hal. 128-134.

Hellwig, L.R. dan Van Winkle, M., (1953), Vapor-Liquid Equilibria for Ethyl Alcohol Binary Systems, Ind. Eng. Chem., 45, hal. 624-629.

Hu, C.-C., Chiu, P.-H., Wang, S.-J. dan Cheng, S.-H., (2015), Isobaric VaporLiquid Equilibria for Binary Systems of Diethyl Carbonate + Propylene Carbonate, Diethyl Carbonate + Propylene Glycol, and Ethanol + Propylene Carbonate at 101.3 kPa, J. Chem. Eng. Data, 60, hal. 1487-1494.

Li, K., Liu, S. dan Liu, X., (2014), An Overview of Algae Bioethanol Production, Int. J. Energy Res., 38, hal. 965-977.

Lladosa, E., Montn, J.B., Burguet, M.C. dan Muoz, R., (2006), Isobaric VaporLiquid Equilibria for the Binary Systems 1-Propyl Alcohol + Dipropyl Ether and 1-Butyl Alcohol + Dibutyl Ether at 20 and 101.3 kPa, Fluid Phase Equilib., 247, hal. 47-53.

Mustain, A., Hartanto, D. dan Altway, S., (2016), Compilation of Extended Binary Interaction Parameters for Alcohols Mixtures Encountered in Alcohol Separation Process, ARPN Journal of Engineering and Applied Sciences, 11, hal. 3465-3472.

Nikoli?, S., Mojovi?, L., Rakin, M. dan Pejin, D., (2009), Bioethanol Production from Corn Meal by Simultaneous Enzymatic Saccharification and Fermentation with Immobilized Cells of Saccharomyces cerevisiae var. Ellipsoideus, Fuel, 88, hal. 1602-1607.

Renon, H. dan Prausnitz, J.M., (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14, hal. 135-144.

Resa, J.M., Gonzlez, C. dan Goenaga, J.M., (2005), Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor?Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + 2-Methyl-1-butanol and Ethanol + 2-Methyl-1-butanol, J. Chem. Eng. Data, 50, hal. 1570-1575.

Resa, J.M., Gonzlez, C. dan Goenaga, J.M., (2006), Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor?Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol, J. Chem. Eng. Data, 51, hal. 73-78.

Resa, J.M., Gonzlez, C., Moradillo, B. dan Ruiz, A., (1997), Isobaric VaporLiquid Equilibria of 3-Methyl-1-butanol with Methanol and Vinyl Acetate at 101.3 kPa, Fluid Phase Equilib., 132, hal. 205-213.

Saravanakumar, K., Senthilraja, P. dan Kathiresan, K., (2013), Bioethanol Production by Mangrove-derived Marine Yeast, Sacchromyces Cerevisiae, Journal of King Saud University - Science, 25, hal. 121-127.

Talebnia, F., Karakashev, D. dan Angelidaki, I., (2010), Production of Bioethanol from Wheat Straw: An Overview on Pretreatment, Hydrolysis and Fermentation, Bioresour. Technol., 101, hal. 4744-4753.

Wang, J. dan Bao, Z., (2013), Investigation on VaporLiquid Equilibrium for 2-Propanol + 1-Butanol + 1-Pentanol at 101.3 kPa, Fluid Phase Equilib., 341, hal. 30-34.

Wiguno, A., Mustain, A., Irwansyah, W.F.E. dan Wibawa, G., (2016), Isothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol, Indones. J. Chem., 16, hal. 111-116.

Wilson, G.M., (1964), Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 86, hal. 127-130.

Wisniak, J. dan Tamir, A., (1988), Association Effects in the Methanol1-Pentanol System, J. Chem. Eng. Data, 33, hal. 432-434.

Zhang, G., Weeks, B.L. dan Wei, J., (2007), Vapor?Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl-2-butanol and Constituent Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 52, hal. 878-883.

Refbacks

  • There are currently no refbacks.