PARAMETER INTERAKSI BINER KESETIMBANGAN UAP-CAIR CAMPURAN ALKOHOL UNTUK OPTIMASI PROSES PEMURNIAN BIOETANOL

Asalil Mustain, Anang Takwanto, Dhoni Hartanto

Abstract

In this work, the binary interaction parameters of vapor-liquid equilibrium for the mixtures of primary alcohols (methanol, ethanol, 1-propanol or 1-butanol) with C5 alcohols were obtained. A total of 15 systems that consisted of isobaric vapor-liquid equilibrium data at atmospheric pressure were selected. The binary interaction parameters were determined as temperature function by correlating the selected vapor-liquid equilibrium data using the Wilson, Non-Random Two-Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coeffi­cient models. The binary interaction parameters were described as the temperature-dependent to increase the capability of the parameters for the application in wide range of temperature. The correlation showed good results because the root mean square devia­tion (RMSD) between the calculation values and experimental data were relatively low. The obtained parameters were very useful for optimizing the distillation column in the bio-ethanol purification process.

Keywords

Bioetanol; desain; kesetimbangan uap-cair; parameter interaksi biner; pemurnian

Full Text:

PDF

References

Abrams, D.S. dan Prausnitz, J.M., (1975), Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE J., 21, hal. 116-128.

Aucejo, A., Burguet, M.C., Monton, J.B., Munoz, R., Sanchotello, M. dan Vazquez, M.I., (1994), Vapor–Liquid Equilibria for Systems of 1-Butanol with 2-Methyl-1-butanol, 3-Methyl-1-butanol, 2-Methyl-2-butanol, and 3 Methyl-2-butanol at 30 and 100 kPa, J. Chem. Eng. Data, 39, hal. 271-274.

Bondi, A., (1968), Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York.

Cardona, C.A., Quintero, J.A. dan Paz, I.C., (2010), Production of Bioethanol from Sugarcane Bagasse: Status and Perspectives, Bioresour. Technol., 101, hal. 4754-4766.

Dias, T.P.V.B., Fonseca, L.A.A.P., Ruiz, M.C., Batista, F.R.M., Batista, E.A.C. dan Meirelles, A.J.A., (2014), Vapor–Liquid Equilibrium of Mixtures Containing the Following Higher Alcohols: 2-Propanol, 2-Methyl-1-propanol, and 3-Methyl-1-butanol, J. Chem. Eng. Data, 59, hal. 659-665.

Duran, J.A., Córdoba, F.P., Gil, I.D., Rodríguez, G. dan Orjuela, A., (2013), Vapor–Liquid Equilibrium of the Ethanol + 3-Methyl-1-butanol System at 50.66, 101.33 and 151.99 kPa, Fluid Phase Equilib., 338, hal. 128-134.

Hellwig, L.R. dan Van Winkle, M., (1953), Vapor-Liquid Equilibria for Ethyl Alcohol Binary Systems, Ind. Eng. Chem., 45, hal. 624-629.

Hu, C.-C., Chiu, P.-H., Wang, S.-J. dan Cheng, S.-H., (2015), Isobaric Vapor–Liquid Equilibria for Binary Systems of Diethyl Carbonate + Propylene Carbonate, Diethyl Carbonate + Propylene Glycol, and Ethanol + Propylene Carbonate at 101.3 kPa, J. Chem. Eng. Data, 60, hal. 1487-1494.

Li, K., Liu, S. dan Liu, X., (2014), An Overview of Algae Bioethanol Production, Int. J. Energy Res., 38, hal. 965-977.

Lladosa, E., Montón, J.B., Burguet, M.C. dan Muñoz, R., (2006), Isobaric Vapor–Liquid Equilibria for the Binary Systems 1-Propyl Alcohol + Dipropyl Ether and 1-Butyl Alcohol + Dibutyl Ether at 20 and 101.3 kPa, Fluid Phase Equilib., 247, hal. 47-53.

Mustain, A., Hartanto, D. dan Altway, S., (2016), Compilation of Extended Binary Interaction Parameters for Alcohols Mixtures Encountered in Alcohol Separation Process, ARPN Journal of Engineering and Applied Sciences, 11, hal. 3465-3472.

Nikolić, S., Mojović, L., Rakin, M. dan Pejin, D., (2009), Bioethanol Production from Corn Meal by Simultaneous Enzymatic Saccharification and Fermentation with Immobilized Cells of Saccharomyces cerevisiae var. Ellipsoideus, Fuel, 88, hal. 1602-1607.

Renon, H. dan Prausnitz, J.M., (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14, hal. 135-144.

Resa, J.M., González, C. dan Goenaga, J.M., (2005), Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + 2-Methyl-1-butanol and Ethanol + 2-Methyl-1-butanol, J. Chem. Eng. Data, 50, hal. 1570-1575.

Resa, J.M., González, C. dan Goenaga, J.M., (2006), Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol, J. Chem. Eng. Data, 51, hal. 73-78.

Resa, J.M., González, C., Moradillo, B. dan Ruiz, A., (1997), Isobaric Vapor–Liquid Equilibria of 3-Methyl-1-butanol with Methanol and Vinyl Acetate at 101.3 kPa, Fluid Phase Equilib., 132, hal. 205-213.

Saravanakumar, K., Senthilraja, P. dan Kathiresan, K., (2013), Bioethanol Production by Mangrove-derived Marine Yeast, Sacchromyces Cerevisiae, Journal of King Saud University - Science, 25, hal. 121-127.

Talebnia, F., Karakashev, D. dan Angelidaki, I., (2010), Production of Bioethanol from Wheat Straw: An Overview on Pretreatment, Hydrolysis and Fermentation, Bioresour. Technol., 101, hal. 4744-4753.

Wang, J. dan Bao, Z., (2013), Investigation on Vapor–Liquid Equilibrium for 2-Propanol + 1-Butanol + 1-Pentanol at 101.3 kPa, Fluid Phase Equilib., 341, hal. 30-34.

Wiguno, A., Mustain, A., Irwansyah, W.F.E. dan Wibawa, G., (2016), Isothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol, Indones. J. Chem., 16, hal. 111-116.

Wilson, G.M., (1964), Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 86, hal. 127-130.

Wisniak, J. dan Tamir, A., (1988), Association Effects in the Methanol–1-Pentanol System, J. Chem. Eng. Data, 33, hal. 432-434.

Zhang, G., Weeks, B.L. dan Wei, J., (2007), Vapor−Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl-2-butanol and Constituent Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 52, hal. 878-883.

Refbacks

  • There are currently no refbacks.