KINERJA ENZIM GANDA PADA PRETREATMENT MIKROALGA UNTUK PRODUKSI BIOETANOL

Padil Padil, Siti Syamsiah, Muslikhin Hidayat, Rina Sri Kasiamdari

Abstract

The use of biomass of microalgae as a feedstock to produce bioethanol is very promising, it is caused by a large amount of carbohydrates contained in microalgae physiology cell. The main obstacle of enzymatic hydrolysis in order to produce bioethanol is the bound starch granules in a rigid cell wall. Therefore, pre-treatment steps needed to remove and convert complex carbohydrates into simple sugars before the fermentation process. Tetraselmis Chuii microalgae species are green microalgae (Chlorophyta) in which the cell wall containing cellulose and hemicellulose as the main constituent, therefore, this study observe the effect of the use of cellulase enzymes and xylanase as a strategy to open up the cell walls of microalgae. Another investigated parameter is the enzyme concentration, temperature, pH, and methods of use of enzymes. The results showed that the highest yield of glucose obtained was 31.912% (w / w) and is achieved under the conditions of a temperature of 45oC, pH of 4.5, the amount of biomass of microalgae as 5 g/L, the concentration of cellulase enzymes and xilanase 30% (w / w) at 40 minute at mechanism using cellulase and xylanase enzymes simultaneously.

Keywords

Enzyme, microalgae, pre-treatment

Full Text:

PDF

References

Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., and Chang, J.S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol. 102, (2011) 71-81.

Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., and Chang, J.S., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78, (2013) 1-10.

Chu, F.L.E., Dupuy, J.L., and Webb, K.L., Polysaccharide composition of five algal species used as food for larvae of the American oyster, Crassostrea virginica, Aquaculture, 29, (1982)241–252

Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., Willats, W.G.T., The cell walls of green algae: a journey through evolution and diversity. Frontiers Plant Sci. 3, (2012) 82.

Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R., Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101 (13), (2010) 4775–4800.

Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M.F., Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74 (5), (2007) 937–953.

Halim R., Harun R., Danquah M.K., Webley P.A., Microalgal cell disruption for biofuel development, Applied Energy 91 (2012) 116–121

Hamandez D., Riano B., Coca M., Garcia Gonzalez M.,C., Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production, Chemical Engineering Journal 262 (2015) 939-945

Harun, R., Danquah, M.K., and Forde, G.M., Microalgal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biotechnol. 85, (2010) 199-203.

Harun, R., Michael, K. and Danquah, Enzymatic hydrolysis of microalgal biomass for bioethanol production, Chemical Engineering Journal, 168, (2011) 1079-1084

Ho, S.H, Huang, S.W., Chen C.Y., Hasunuma, T., Kondo, A., and Chang, J.S., , Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresource Technology, 135, (2013) 191-198.

Ho, S.H, Huang, S.W., Chen C.Y., Hasunuma, T., Kondo, A., and Chang, J.S., Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresource Technology, 135, (2013) 191-198

Ho, S.H., Chen, C.Y., Lee, D.J., and Chang, J.S., , Perspectives on microalgal CO2-emission mitigation systems – a review, Biotechnol. Adv., 29, (2011) 189-198.

Inn Shi Tan, Man Kee Lam, Keat Teong Lee Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production Carbohydrate Polymers 94 (2013) 561– 566).

Jegannathan, K. R., Chan, E.-S., & Ravindra, P.. Harnessing biofuels: A global Renaissance in energy production? Renewable and Sustainable Energy Reviews, 13, (2009) 2163–2168

John, R.P., Anisha, G.S., and Nampoothiri, M.K., Ashok Pandey Micro and macroalgal biomass: A renewable source for bioethanol, Bioresource Technology, 102, (2011) 186-193

John, R.P., Anisha, G.S., and Nampoothiri, M.K., Ashok Pandey Micro and macroalgal biomass: A renewable source for bioethanol, Bioresource Technology, 102, (2011) 186-193

Karthika, K., Arun, A. B., & Rekha, P. D. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers, 90, (2012) 1038–1045

Lee, O.K., Oh, Y.K., and Lee, E.Y., Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1, Bioresource Technology, 196, (2015) 22-27

Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.,Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66 (3), (2002) 506–577.

M. Chauve, H. Mathis, D. Huc, D. Casanave, F. Monot, N. Ferreira, omparative kinetic analysis of two fungal beta-glucosidases, Biotechnol. Biofuels 3 (2010),

Marsalkova, B., Sirmerova, M., Kurec, M., Branyik, T., Branyikova, I.,

Melzoch, K., Zachleder, V., Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem. Eng. Trans. 21 (2010) 1279–1284.

Moxley, G., Zhang, Y.H.P.,More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels 21 (6), (2007) 3684–3688.

Nigam, P.S., Singh, A., Production of liquid biofuels from renewable resources. Prog. Energ. Combust. 37 (1), (2011)52–68.

Padil et al., Cell Distruption Mikroalga Secara Enzimatis Dengan Menggunakan Sellulase, Reaktor, Vol. 15 No. 4, (2015) 213-217

Park, J.-H., Hong, J.-Y., Jang, H. C., Oh, S. G., Kim, S.-H., Yoon, J.-J., & Kim, Y. J. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, (2011) 83–88.

Richmond, A., Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford, OX, UK, Ames, Iowa, USA. (2004)

Ross, A. B., Jones, J. M., Kubacki, M. L., & Bridgeman, T. Classification of macroalgae as fuel and its hermochemical behaviour. Bioresource Technology, 99, (2008) 6494–6504

Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G., & Schmid, E.. Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies. Applied Energy, 87, (2010) 2128–2141

Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110, (2010) 3552–3599.

Refbacks

  • There are currently no refbacks.