PERHITUNGAN DISTRIBUSI MUATAN INTI HALO ¹¹Li SECARA SWAKONSISTEN DENGAN METODE SKYRME-HARTREE-FOCK

Raden Oktova

Program Magister Pendidikan Fisika, Universitas Ahmad Dahlan, Yogyakarta Kampus II, Jl. Pramuka 42, Yogyakarta 55161 Email: r.oktova@uad.ac.id

Abstrak

Telah dilakukan perhitungan swakonsisten distribusi muatan inti halo ¹¹Li dengan menggunakan metode Skyrme-Hartree-Fock. Himpunan parameter Skyrme yang digunakan adalah Z_o , SkM*, dan SkIII. Hasil perhitungan iteratif dengan ketiga himpunan parameter Skyrme menghasilkan distribusi muatan inti dan jari-jari *rms* muatan inti. Diperoleh jari-jari *rms* muatan inti lebih kecil dibandingkan dengan nilai eksperimental, dan perhitungan dengan himpunan parameter SkM* memberikan nilai jari-jari *rms* muatan paling teliti. Ketelitian hasil perhitungan sangat dipengaruhi oleh kopling spinorbit dan suku pertukaran potensial Coulomb.

Kata kunci: distribusi muatan, inti halo, ¹¹Li, metode Skyrme-Hartree-Fock

PENDAHULUAN

Salah satu gejala menarik pada inti-inti eksotik di dekat garis leleh (drip line) nukleon adalah efek halo [1], yaitu inti mempunyai jarijari jauh lebih besar dari ramalan jari-jari inti dalam model tetes cairan [2] karena adanya nukleon yang terikat lemah. Inti ¹¹Li adalah salah satu inti dengan struktur halo yang sudah dikenal baik, yaitu dua buah neutron yang secara longgar mengelilingi suatu teras ⁹Li [3]. Kajian mutakhir tentang jari-jari muatan inti isotop-isotop Li dilakukan antara lain oleh dengan Sánchez [4,5], yaitu kombinasi pengukuran pergeseran isotop dan perhitungan pergeseran massa; dan hasilnya menunjukkan bahwa jari-jari muatan menurun secara kontinu terhadap nomor massa inti dari ⁶Li ke ⁹Li, kemudian naik dari ⁹Li ke ¹¹Li; selain itu, diperoleh nilai eksperimental jari-jari rms muatan inti ¹¹Li sebesar 2,467(37) fm.

Makalah ini menyajikan suatu model perhitungan secara swakonsisten distribusi muatan pada inti halo. Dengan perhitungan swakonsisten diharapkan dapat ditarik kesimpulan umum yang bukan hanya berlaku untuk inti-inti halo yang sudah dikenal, melainkan juga untuk memberikan prediksi yang cukup teliti akan inti-inti halo yang belum Jika diasumsikan potensial inti ditemukan. mempunyai simetri bola, perhitungan

swakonsisten tsb. dapat dilakukan secara iteratif menggunakan metode Hartree-Fock yang memerlukan suatu fungsional kerapatan-tenaga (untuk selanjutnya disebut fungsional saja). Dalam kajian ini digunakan fungsional Skyrme, mengingat fungsional ini telah digunakan secara luas untuk menjelaskan berbagai sifat keadaan dasar inti bola dalam berbagai daerah peta inti [6]. Sebagai bahan kajian awal, dalam makalah ini disajikan contoh hasil perhitungan pada salah satu isotop yang sudah dikenal baik menunjukkan efek halo, yaitu ¹¹Li.

DASAR TEORI

Dalam perhitungan keadaan dasar inti bola dengan model Skyrme-Hartree-Fock, tenaga total inti dapat dituliskan sebagai

$$E = E_{skvrme} + E_{coul} + E_{pair} - E_{cm}, \quad (1)$$

dengan suku-suku pada ruas kanan berturutturut adalah tenaga Skyrme, Coulomb, pasangan, dan pusat massa, dan E_{Skyrme} merupakan suku yang dominan.

Secara singkat metode perhitungan keadaan dasar inti bola secara swakonsisten dengan model Skyrme-Hartree-Fock [7] adalah sbb. Perhitungan keadaan dasar secara swakonsisten didasarkan pada persamaan Hartree-Fock,

$$\langle \varphi_{\alpha} | H_{HF} | \varphi_{\beta} \rangle \equiv \langle \varphi_{\alpha} | T | \varphi_{\beta} \rangle$$

$$+ \sum_{j=1}^{N} \langle \varphi_{\alpha} \varphi_{j} | \hat{V} | \varphi_{j} \varphi_{\beta} \rangle_{a} = \varepsilon_{\alpha} \delta_{\alpha\beta} , (2)$$

dengan subskrip "a" menunjukkan fungsi gelombang bersifat antisimetrik. Persamaan ini dapat diungkapkan dalam wakilan koordinat sebagai

$$\begin{cases} -\frac{\hbar^2}{2m}\Delta + U_H(x) \\ + \int dx U_{EX}(x, x') \varphi_\alpha(x') = \varepsilon_\alpha \varphi_\alpha(x) \end{cases}$$
(3)

dengan Hamiltonian Hartree-Fock \hat{H}_{HF} dapat dipisahkan menjadi potensial lokal atau Hartree berbentuk

$$\hat{U}_{H}(x) = \sum_{j=1}^{N} \int dx' \varphi_{j} * (x') \hat{V}(x, x') \varphi_{j}(x'), \quad (4)$$

dan suatu potensial nonlokal atau pertukaran

$$\hat{U}_{EX}(x,x') = \sum_{j=1}^{N} \varphi_j * (x') \hat{V}(x,x') \varphi_j(x').$$
(5)

Potensial Skyrme menyajikan suatu gaya berjangkauan nol yang bergantung pada kerapatan dan momentum,

$$\begin{split} V_{Skyrme} &= t_0 (1 + x_0 P_x) \delta(\vec{r}_i - \vec{r}_j) \\ &+ \frac{1}{2} t_1 (1 + x_1 P_x) \Big\{ (\vec{p}_i - \vec{p}_j)^2 \, \delta(\vec{r}_i - \vec{r}_j) \\ &+ \delta(\vec{r}_i - \vec{r}_j) (\vec{p}_i - \vec{p}_j)^2 \Big\} \\ &+ t_2 (1 + x_2 P_x) (\vec{p}_i - \vec{p}_j) \cdot \delta(\vec{r}_i - \vec{r}_j) (\vec{p}_i - \vec{p}_j) \\ &+ \frac{1}{6} t_3 (1 + x_3 P_x) \rho^{\alpha}(\vec{r}) \delta(\vec{r}_i - \vec{r}_j) \\ &+ i t_4 (\vec{p}_i - \vec{p}_j) \cdot \delta(\vec{r}_i - \vec{r}_j) (\vec{\sigma}_i + \vec{\sigma}_j) \times (\vec{p}_i - \vec{p}_j), \end{split}$$
(6)

 $P_{\rm x}$ adalah operator pertukaran ruang $\vec{r}_i \leftrightarrow \vec{r}_i, \ \vec{\sigma}$ vektor matriks spin Pauli, dan $\bar{r} = (\vec{r}_i + \vec{r}_i)/2,$ parameter-parameter dan $t_0, x_0, t_1, x_1, t_2, x_2, t_3, x_3, \alpha, t_4$ ditentukan secara empiris dari data jari-jari rms dan tenaga ikat inti. Bentuk potensial sederhana tsb. memungkinkan nilai harap tenaga untuk determinan-determinan Slater dapat dihitung dari besaran-besaran kerapatan dan arus partikel berikut,

$$\begin{split} \rho_{q}(\vec{r}) &= \sum_{\beta \in q} w_{\beta} \varphi_{\beta}(\vec{r})^{+} \varphi_{\beta}(\vec{r}), \\ \vec{j}_{q}(\vec{r}) &= \frac{i}{2} \sum_{\beta \in q} w_{\beta} \left[\nabla \varphi_{\beta}(\vec{r})^{+} \varphi_{\beta}(\vec{r}) - \varphi_{\beta}(\vec{r})^{+} \nabla \varphi_{\beta}(\vec{r}) \right], \quad (7) \\ \tau_{q}(\vec{r}) &= \sum_{\beta \in q} w_{\beta} \nabla \varphi_{\beta}(\vec{r})^{+} \cdot \nabla \varphi_{\beta}(\vec{r}), \\ \nabla \vec{J}_{q}(\vec{r}) &= -i \sum_{\beta \in q} w_{\beta} \nabla \varphi_{\beta}(\vec{r})^{+} \cdot \nabla \times \vec{\sigma} \varphi_{\beta}(\vec{r}), \end{split}$$

dengan φ_{β} adalah fungsi gelombang partikeltunggal keadaan β , dan indeks isospin qmeliputi keadaan-keadaan proton dan neutron. Peluang pengisian keadaan β adalah w_{β} . Bila suatu kulit sepenuhnya terisi, maka $w_{\beta} = 1$, namun nilai-nilai pecahan dapat terjadi untuk inti-inti tanpa bilangan ajaib (*nonmagic nuclei*), dan pengisian ini dapat dihitung dengan skema perhitungan gaya pasangan.

Khusus untuk keadaan dasar inti bola, dalam koordinat bola fungsi gelombang partikel-tunggal dapat dipisahkan,

$$\varphi_{\beta}(\vec{r}) = \frac{R_{\beta}(r)}{r} Y_{j_{\beta}\ell_{\beta}m_{\beta}}(\theta, \phi), \qquad (8)$$

dengan $Y_{j_{\beta^{\ell}\beta^{m_{\beta}}}}(\theta,\phi)$ adalah fungsi-fungsi harmonik bola spinor. Fungsi gelombang radial $R_{\beta}(r)$ tidak bergantung pada bilangan kuantum m_{β} . Fungsional tenaga Skyrme dapat dinyatakan dalam bentuk

$$\begin{split} E_{Skyme} &= 4\pi \int_{0}^{\infty} dr \, r^{2} \Biggl\{ \frac{\hbar^{2}}{2m} \, \tau + \frac{1}{2} t_{0} (1 + \frac{1}{2} \, x_{0}) \rho^{2} \\ &- \frac{1}{2} t_{0} (\frac{1}{2} + x_{0}) \sum_{q} \rho_{q}^{2} \\ &+ \frac{1}{12} t_{3} (1 + \frac{1}{2} \, x_{3}) \rho^{\alpha+2} - \frac{1}{12} t_{3} (\frac{1}{2} + x_{3}) \rho^{\alpha} \sum_{q} \rho_{q}^{2} \\ &+ \frac{1}{4} \Big[t_{1} (1 + \frac{1}{2} \, x_{1}) + t_{2} (1 + \frac{1}{2} \, x_{2}) \Big] \rho \tau \\ &- \frac{1}{4} \Big[t_{1} (\frac{1}{2} + x_{1}) - t_{2} (\frac{1}{2} + x_{2}) \Big] \sum_{q} \rho_{q} \tau_{q} \\ &- \frac{1}{16} \Big[3 t_{1} (1 + \frac{1}{2} \, x_{1}) - t_{2} (1 + \frac{1}{2} \, x_{2}) \Big] \rho \nabla^{2} \rho \\ &+ \frac{1}{16} \Big[3 t_{1} (1 + \frac{1}{2} \, x_{1}) + t_{2} (1 + \frac{1}{2} \, x_{2}) \Big] \sum_{q} \rho_{q} \nabla^{2} \rho_{q} \\ &- \frac{1}{2} t_{4} \Bigg[\rho \nabla \vec{J} + \sum_{q} \rho_{q} \nabla \vec{J}_{q} \Bigg] \Biggr\}, \end{split}$$
(9)

dengan $\nabla^2 = \partial \frac{2}{r} + \frac{2}{r} \partial_r$, kerapatan total $\rho = \rho_{proton} + \rho_{neutron}$, $\tau = \tau_{proton} + \tau_{neutron}$, kerapatan arus total $\vec{J} = \vec{J}_{proton} + \vec{J}_{neutron}$, dan $\nabla \vec{J} = \nabla \vec{J}_{proton} + \nabla \vec{J}_{neutron}$. Untuk keadaan dasar arus \vec{j} nol, sedangkan besaran-besaran kerapatan dan arus dalam pers. (7) menjadi fungsi radial *r* dan turunannya.

Dalam wakilan bola, persamaan Hartree-Fock untuk $R_{\beta}(r)$ dapat diungkapkan sebagai

$$h_q R_\beta = \varepsilon_\beta R_\beta, \tag{10}$$

dengan Hamiltonian medan rata-rata (Hartree-Fock)

$$h_q = \partial_r \boldsymbol{B}_q \partial_r + \boldsymbol{U}_q + \boldsymbol{U}_{ls,q} \vec{\ell} \cdot \vec{\sigma}, \qquad (11)$$

dengan operator \mathbf{B}_q , U_q dan $U_{ls,q}$ merupakan fungsi dari ρ_q , ρ , \vec{J}_q , dan \vec{J} . Perlu diperhatikan bahwa pers. (10) bersifat nonlinier dalam fungsi gelombang $R_\beta(r)$ melalui *Hamiltonian* medan rata-rata h_q yang bergantung pada kerapatan.

Karena nukleon yang terikat lemah pada inti halo mempunyai kontribusi penting dalam gerak pusat massa, koreksi pusat massa perlu diperhitungkan untuk inti halo. Prosedur pertama adalah dengan suatu koreksi diagonal, dapat dihitung koreksi massa efektif

$$m_{eff} = m \left[1 - \frac{1}{A} \right]. \tag{12}$$

dan operator dua-benda tenaga kinetik pusat massa dihampiri dengan operator satu-benda, $\sum \vec{p}_{cm}^2 \approx (\sum \vec{p}_i)^2$. Prosedur ini mungkin baik untuk perhitungan keadaan dasar namun dapat menghasilkan parameter massa yang kurang tepat untuk translasi, rotasi, vibrasi dan fisi. Suatu koreksi pusat massa yang lebih konsisten adalah dengan tetap menggunakan massa nukleon bebas namun tenaga dari perhitungan Hartree-Fock dikurangi dengan tenaga titik nol translasi (*zero-point-motion energy*, ZPE)

$$Z_{trans} = \frac{\langle \vec{p}_{cm}^2 \rangle}{2Am}, \qquad (13)$$

dengan \vec{p}_{cm} adalah operator momentum pusat massa. Pemilihan prosedur ini konsisten dengan koreksi ZPE dalam perhitungan-perhitungan kolektif inti [8], namun memerlukan waktu lama dalam perhitungan komputasi.

Jika telah diperoleh penyelesaian pers. Hartree-Fock (10), dan diperoleh nilai w_{β} , dapat dihitung tenaga sistem dari fungsional E_{Skyrme} . Namun sebagian besar informasi tenaga dapat diperoleh dari tenaga partikel-tunggal \mathcal{E}_{β} . Gaya Coulomb mempunyai jangkauan tak terhingga, sehingga akan sangat menghabiskan waktu jika suku pertukaran dihitung secara eksak; bagian ini dihitung dengan hampiran Slater, dan diperoleh tenaga Coulomb,

$$E_{\text{Coul}} = \frac{1}{2} e^2 \int d^3 \mathbf{r} \, d^3 \mathbf{r}' \rho_{\text{C}}(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho_{\text{C}}(\mathbf{r}') + E_{\text{Coul, exch}}, \qquad (14)$$

Dengan suku pertukaran

$$E_{\text{Coul,exch}} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \cdot 4\pi \int_{0}^{\infty} dr \, r^{2} \rho_{\text{pr}}^{4/3}, \qquad (15)$$

dan sumbangannya pada potensial Hartree-Fock dapat dihitung dengan variasi

$$U_{\rm Coul} = U_{\rm Coul, dir} + U_{\rm Coul, exch}, \tag{16}$$

Dengan suku langsung

$$-\Delta U_{\text{Coul,dir}} = 4\pi e^2 \rho_{\text{C}}, \qquad (17)$$
$$U_{\text{Coul,exch}} = -\left(\frac{3}{\pi}\right)^{1/3} \rho_{\text{pr}}^{1/3}.$$

Perhitungan dalam kajian ini menggunakan gaya pasangan sederhana (skematik) dengan fungsional berbentuk

$$E_{pair} = -\sum_{q} G_{q} \left[\sum_{\beta \in q} \sqrt{w_{\beta} (1 - w_{\beta})} \right]^{2}, \qquad (18)$$

dengan unsur matriks gaya pasangan G_q adalah konstan dengan bentuk $G_{proton} = 22 / A$ dan $G_{neutron} = 29 / A$, dan w_{β} dihitung secara iteratif dengan hampiran BCS.

Kerapatan muatan inti dihitung dengan transformasi invers Fourier-Bessel terhadap faktor bentuk proton dan neutron

$$\rho_c(r) = \frac{1}{2\pi^2} \int dk \, k^2 j_0(kr) F_C(k), \qquad (19)$$

dengan j_0 fungsi Bessel bola orde nol, dan diperoleh jari-jari *rms* muatan inti

$$r_{c} = \frac{3}{F_{c}(0)} \frac{d^{2}F_{c}(k)}{dk^{2}} \bigg|_{k=0}.$$
 (20)

METODE PERHITUNGAN

Untuk membantu perhitungan numerik, program Fortran 77 HAMOMN [7] digunakan komputer pribadi dengan bahasa pada Windows pemrograman Compaq Visual Fortran Professional Edition 6.5. Himpunan parameter fungsional Skyrme yang digunakan adalah Z_a , SkM*, dan SkIII [9], dengan nilai parameter-parameter seperti ditunjukkan dalam Tabel 1.

Parameter	Z_{o}	SkM*	SkIII
t ₀	-1983,76	-2645,0	-1128,75
t_1	362,252	410,0	395,0
t_2	-104,27	-135,0	-95,0
t ₃	11861,4	15595,0	14000,0
t_4	123,69	130,0	120,0
<i>x</i> ₀	1,1717	0,09	0,45
<i>x</i> ₁	0	0	0
<i>x</i> ₂	0	0	0
<i>x</i> ₃	1,7620	0	1,0
α	0,25	0,16667	1,0

Tabel 1. Parameter fungsional Skyrme untuk himpunan parameter Z_o , SkM*, dan SkIII

Proses iteratif untuk menyelesaikan persamaan Hartree-Fock radial (pers. 10) guna mendapatkan keadaan dasar inti dimulai dengan potensial osilator harmonik isotropik [10] sebagai tebakan awal. Ruang koordinat radial dibagi menjadi 31 titik kisi, dengan ukuran langkah 0,3 fm. Cacah aras partikel-tunggal yang digunakan, n_{max} dihitung sedemikian rupa sehingga seluruh cacah nukleon (proton atau neutron) dapat tertampung dalam aras-aras tersebut. Langkah iterasi dihentikan ketika terpenuhi dua syarat sekaligus: (a) selisih nilai tenaga total partikel-tunggal (pers. 1) pada dua langkah berurutan lebih kecil atau sama dengan nilai toleransi tenaga tertentu., dan (b) selisih nilai jari-jari muatan pada dua langkah berurutan lebih kecil atau sama dengan nilai toleransi jari-jari tertentu. Dalam kajian ini digunakan nilai toleransi tenaga dan jari-jari berturut-turut sama dengan 0,001 MeV dan 0.001 fm.

Kecuali dikatakan lain, perhitungan yang lengkap memperhitungkan semua suku fungsional tenaga total dalam pers. (1), khususnya fungsional tenaga Skyrme pers. (9), dengan memperhitungkan sumbangan tenaga Coulomb lengkap (suku langsung dan tidak langsung) sesuai pers. (14-17), suku pasangan (18) diperhitungkan dengan skema BCS. Perhitungan kerapatan muatan inti $\rho_c(r)$ lengkap memperhitungkan *folding* secara muatan nukleon bebas dengan faktor bentuk (19), dan koreksi gerak pusat massa dilakukan secara lengkap (dengan operator dua-benda) menggunakan pers. (13).

HASIL DAN PEMBAHASAN

Perhitungan jari-jari rms muatan inti dapat dilakukan dengan massa proton dan neutron bebas sama, dengan $\frac{\hbar^2}{2m} = 20,7525 \,\text{MeV.fm}^2$, dan dapat juga dengan membedakan massa proton dan neutron, dengan $\frac{\hbar^2}{2m_p} = 20,735 \,\text{MeV.fm}^2$, $\frac{\hbar^2}{2m_a} = 20,721 \,\text{MeV.fm}^2$. Sebagaimana ditunjukkan di bawah ini, ternyata kedua prosedur pemilihan massa nukleon tsb. tidak berpengaruh signifikan terhadap jari-jari *rms* muatan inti yang diperoleh.

Pada Tabel 2 ditunjukkan hasil perhitungan jari-jari rms muatan inti dengan menggunakan massa proton dan neutron bebas sama, dan terlihat bahwa semua nilai jari-jari rms muatan inti jauh lebih kecil dari nilai eksperimental 2,467 fm, dengan himpunan parameter SkM* memberikan hasil yang paling teliti dan SkIII paling tidak teliti. Jika kopling spin-orbit dalam fungsional tenaga Skyrme tidak diperhitungkan, selisih antara nilai terhitung dari nilai eksperimental untuk perhitungan dengan ketiga himpunan parameter Z_{a} , SkM*, dan SkIII lebih besar dari jika kopling spin-orbit diperhitungkan. Jika dibandingkan perhitungan tanpa memperhitungkan kopling spin-orbit, pengaruh kopling spin-orbit dengan semua himpunan parameter adalah memberikan jarijari rms muatan inti sekitar 0,02 fm lebih dekat ke nilai acuan.

Tabel 2. Hasil perhitungan jari-jari muatan untuk kasus massa proton dan neutron sama.

Himpunan	Jari-jari muatan, r _c (fm)	
parameter	Tanpa spin-	Dengan
	orbit	spin-orbit
Z_o	2,216	2,235
SkM*	2,300	2,321
SkIII	2,206	2,225

Tabel 3. Hasil perhitungan jari-jari muatan untuk kasus massa proton dan neutron tidak sama.

Himpunan	Jari-jari muatan, r _c (fm)	
parameter	Tanpa spin-	Dengan
	orbit	spin-orbit

Z _o	2,215	2,234
SkM*	2,299	2,320
SkIII	2,206	2,225

Hasil perhitungan untuk kasus massa proton dan neutron dibedakan ditunjukkan dalam Tabel 3, dan memberikan kesimpulan yang sama dengan kasus massa proton dan neutron sama. Hasil perhitungan jari-jari rms muatan inti adalah 0,001 fm lebih lebih kecil daripada nilainya jika massa proton dan neutron sama, kecuali untuk SkIII yang tidak menunjukkan perubahan hasil. Menarik untuk dilihat bahwa nilai parameter t_4 , yaitu parameter terkait kopling spin-orbit pada potensial Skyrme (pers. adalah yang terbesar pada SkM* dan 6). terkecil pada SkIII, suatu petunjuk bahwa kopling spin-orbit boleh jadi merupakan salah satu faktor paling berpengaruh terhadap ketelitian hasil perhitungan jari-jari rms muatan inti.

Untuk selanjutnya hanya dibicarakan perhitungan di mana massa proton dibedakan dari massa neutron, dan kopling spin-orbit diperhitungkan dalam fungsional tenaga.

Grafik distribusi kerapatan muatan sebagai fungsi jarak radial hasil perhitungan dengan ketiga himpunan parameter (dengan memperhitungkan kopling spin-orbit) tidak menunjukkan perbedaan yang berarti satu sama lain, sebagaimana ditunjukkan oleh Gambar 1. Sayang, tidak tersedia data eksperimental untuk menguji ketelitian distribusi muatan hasil perhitungan.

Pada semua kasus, jari-jari rms proton lebih kecil dibandingkan dengan jari-jari rms muatan inti, dengan selisih antara 0,04 fm pada himpunan parameter Z_o sampai sekitar 0,17 fm pada SkM*, sedangkan jari-jari rms neutron lebih besar dibandingkan dengan jari-jari rms muatan inti, dengan selisih antara 0,55 fm pada SkM* sampai 0,63 fm pada Z_o . Hal ini dapat dipahami mengingat distribusi muatan inti merupakan hasil folding antara distribusi muatan proton dan distribusi muatan neutron. Dalam menggunakan pers. (14-16) untuk menghitung potensial Coulomb, dapat digunakan kerapatan muatan inti tetapi dapat juga digunakan muatan proton saja, dan hasil perhitungan menunjukkan kedua prosedur tidak memberikan selisih yang signifikan, yaitu antara 0 sampai dengan 0,001 fm untuk semua

kasus. Selisih yang tidak signifikan menunjukkan *folding* potensial Coulomb tidak dapat meningkatkan ketelitian hasil perhitungan. Selain itu, jika suku pertukaran Coulomb dalam pers. (14) diabaikan, diperoleh jari-jari *rms* muatan inti lebih besar sekitar 0,04 fm pada SkM* dan SkIII hingga 0,05 fm pada Z_a .

Gambar 1. Kerapatan muatan sebagai fungsi jarak radial.

Tabel 4. Hasil perhitungan jari-jari muatan untuk kasus massa proton dan neutron tidak sama, dengan memperhitungkan kopling spinorbit, dengan hampiran koreksi pusat massa satu-benda, pers. (12)

Himpunan parameter	Jari-jari muatan, <i>r_c</i> (fm)
Z _o	2,220
SkM*	2,293
SkIII	2,221

Dalam pembahasan sejauh ini koreksi gerak pusat massa (ZPE) dihitung secara lengkap dengan hampiran operator dua-benda dengan pers. (13). Sebagai alternatif, jika digunakan koreksi gerak pusat massa secara kasar dengan pers. (12), dan sebagaimana dapat dilihat pada Tabel 4, jari-jari *rms* muatan inti yang diperoleh akan berkurang antara 0,004 fm pada kasus SkIII hingga hampir 0,03 fm pada kasus SkM* dibandingkan jika digunakan koreksi secara lengkap.

Sejauh ini dibahas hasil perhitungan dengan gaya pasangan konstan (18), dengan bentuk $G_{proton} = 22 / A$ dan $G_{peutron} = 29 / A$. Namun demikian sebagai alternatif gaya pasangan dapat juga dihitung dengan menggunakan hampiran celah tenaga konstan mengikuti bentuk empiris $\Delta = 11, 2/\sqrt{A}$ MeV [11] dan hasilnya ternyata sedikit lebih teliti dibandingkan jika digunakan hampiran gaya pasangan konstan. Sebagaimana dapat dilihat pada Tabel 5, dibandingkan hasil pada kolom terakhir Tabel 3 diperoleh kenaikan nilai jarijari rms muatan inti dari 0,005 fm pada SkIII hingga 0,006 fm pada Z_{o} .

Tabel 5 Hasil perhitungan jari-jari muatan untuk kasus massa proton dan neutron tidak sama, dengan memperhitungkan kopling spinorbit, dengan hampiran celah tenaga konstan

$\Delta = 11, 2 / \sqrt{A} \text{ MeV.}$		
Himpunan	Jari-jari muatan, r _c	
parameter	(fm)	
Z _o	2,240	
SkM*	2,328	
SkIII	2,230	

Kenyataan bahwa semua hasil perhitungan jari-jari rms muatan inti jauh lebih kecil daripada nilai acuan merupakan pertanyaan penting yang muncul dari kajian ini, dan ketidaktelitian ini diduga karena ¹¹Li adalah inti ringan, di mana gaya tiga-benda cukup penting [12,13], sedangkan ketiga himpunan parameter Skyrme yang dikaji diperoleh dengan parametrisasi pada inti-inti bermassa sedang hingga besar. Komponen gava tiga-benda pada fungsional Skyrme muncul pada suhu yang mengandung parameter t_3 pada pers. (6). penelitian Disarankan untuk selanjutnya dilakukan parametrisasi ulang suku gaya tigabenda pada fungsional Skyrme.

SIMPULAN DAN SARAN

Pada perhitungan swakonsisten distribusi muatan inti halo¹¹Li dengan menggunakan metode Skyrme-Hartree-Fock menggunakan tiga himpunan parameter Z_o , SkM, dan SkIII, diperoleh jari-jari *rms* muatan inti yang selalu lebih kecil dari nilai acuan, dan himpunan parameter SkM* memberikan nilai paling teliti. Ketelitian hasil perhitungan sangat dipengaruhi oleh kopling spin-orbit dan suku pertukaran potensial Coulomb. Pemilihan massa nukleon yang berbeda antara proton dan neutron tidak berpengaruh.

Untuk kajian selanjutnya masih dapat dikaji lebih jauh pengaruh gaya tiga-benda pada perhitungan untuk inti-inti ringan.

DAFTAR PUSTAKA

- [1]. Hansen, P.G. & Johnson, B. 1987. *Europhys. Lett.* vol. **4**, p. 409.
- [2]. Ring, P. & Schuck, P. 2000. The Nuclear Many-Body Problem, Berlin: Springer, first ed. 2nd printing.
- [3]. Jensen, A. S., Riisager, K., Fedorov, D. V. & Garrido, E. 2004. Structure and reactions of quantum halos. *Rev. Mod. Phys.* vol. **76**, pp. 215-261.
- [4]. Sánchez, R. , Nörtershäuser, W. , Ewald, G. , Albers, D. , Behr, J. , Bricault, P. , Bushaw, B. , Dax, A. , Dilling, J. , Dombsky, M. , Drake, G.W.F. , Götte, S. , Kirchner, R. , Kluge, H.-J. , Kühl, Th., Lassen, J. , Levi, C.D.P. , Pearson, M.R. , Prime, E. , Ryjkov, V. , Wojtaszek, A. , Yan, Z.-C. & Zimmermann, C. 2005. "Nuclear charge radius of lithium-11," *Preprint* of GSI Scientific Report 2005 (GSI Report 2006-1), AP-EXP-SPECTROSCOPY-03.
- [5]. Sánchez, R. , Nörtershäuser, W. , Ewald, G. , Albers, D. , Behr, J. , Bricault, P. , Bushaw, B. , Dax, A. , Dilling, J. , Dombsky, M. , Drake, G.W.F. , Götte, S. , Kirchner, R. , Kluge, H.-J. , Kühl, Th., Lassen, J. , Levi, C.D.P. , Pearson, M.R. , Prime, E. , Ryjkov, V. , Wojtaszek, A. , Yan, Z.-C. & Zimmermann, C. 2006. "Nuclear charge radii of ^{9,11}Li: the influence of halo neutrons," *Phys. Rev. Lett.* vol. **96**, p. 033002.
- [6]. Bender, M. , Heenen, P.-H. & Reinhard, P.-G. 2003. *Rev. Mod.Phys.* vol. **75**, p. 121.

- [7]. Reinhard, P.-G. 1991. "The Skyrme-Hartree-Fock model of the nuclear ground state", in *Computational Nuclear Physics 1: Nuclear structure*, K. Langanke, J.A. Maruhn, and S.E. Koonin (eds.), Berlin: Springer Verlag, 1991, pp. 28-50.
- [8]. Giraud, B. & Grammaticos, B. 1975. *Nucl. Phys.* vol. A255, p. 141.
- [9]. Friedrich, J. & Reinhard, P.-G. 1986. *Phys. Rev.* vol. **C33**, p. 335.
- [10]. Oktova, R. 2007. "Perhitungan aras-aras tenaga partikel-tunggal inti bola dalam ruang koordinat," *Jurnal Forum MIPA* vol. **5** (1), p.1.
- [11]. Blocki, J. & Flocard, M. 1976. *Nucl. Phys.* vol. **A273**, p. 45.
- [12]. Moya de Guerra, E., Garrido,
 E. & Sarriguren, P., 2002. in Challenges of Nuclear Structure, Proc. 7th International Spring Seminar on Nuclear Physics, A. Covello (ed.), Singapore: World Scientific, p. 63.
- [13]. Garrido, E. & Moya de Guerra, E., 2000. *Phys. Lett.* vol. **B488**, p. 68.