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Abstract 

     We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential 

of the nonlinear master Schrödinger equation. The equation itself is based on two classical conservation 

laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for 

the definition of quantum particle. We also prove that the solution can’t be normalized.  
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1. Introduction 

 

In the twentieth century, there were some 

interesting discussions about quantum theory 

viewed both mathematical and physical aspects. In 

this time, we only consider about two cases. One 

of them, the recent paper [1] which showed that the 

Schrödinger equation could be derived by 

Newtonian mechanics which is based on the 

assumption that every particle of mass m  follows 

the Brownian motion with no friction and diffusion 

coefficient m2 . In the other side, Feynman could 

formulate the derivation of Schrödinger equation 

from path integral concept which has been taken 

from Dirac’s idea that all classical paths contribute 

to transition amplitude; for further reading see [2]. 

It is clear that Schrödinger equation can be derived 

by any other interpretations of the particle motion. 

The second one is about oscillator harmonic 

model. The harmonic oscillator has been discussed 

in many quantum areas and its model has been 

applied to explain the microscopic phenomena [3]. 

All the models of harmonic oscillator have each 

unique interpretation. In the recent paper [4], the 

relativistic oscillator model, in case of the 

generalized Schrödinger picture, gives us the 

information that the operators of spacetime 

independent in that state induce the spacetime 

dependent operators related to the Killing vectors 

of the AdS space. Beside of that, the ground state 

energy of the model can not define like the ground 

state energy for nonrelativistic harmonic oscillator 

in quantum mechanics. In the other paper [5], the 

mechanical system at the horizon in AdS2 can be 

considered as thermal harmonic oscillator which its 

temperature will be given by Hawking temperature 

at the horizon.  

In this paper, we consider another model of 

Schrödinger equation, named nonlinear master 

Schrödinger. The main purpose of this paper itself 

is to mathematically discuss the nonrelativistic 

motion of particle in harmonic oscillator potential 

for the nonlinear master Schrödinger equation 

which was initially proposed by Guerra, Pusterla, 

and Smolin in order to build the general theory of 

quantum mechanics. The detail explanations of 

nonlinear master Schrödinger can be found in the 

references [6-9]. The main reason of the equation’s 

construction was inspired from Einstein and de 

Broglie who believe that the general theory of 

quantum should be nonlinear. The formulation 

itself did not include two fundamental postulates in 

ordinary quantum theory, but it was built from 

Hamilton-Jacobi and continuity equations. 

However, we also realize that the superposition 

principle generally does not hold anymore. In 

addition, the general solution which has been 

proposed will not generally give us the 

normalization constant because of the spacetime 

dependent amplitude.  

For the short review, according to them, a 

quantum particle, at the same time has two parts, a 

localized wave (singularity part) and a cloud of 

particle (extended part). Hamilton-Jacobi describes 

the particle motion which is called as singularity 

part; otherwise the continuity equation describes 

the wave motion which is called the extended part. 

It is clear that the singularity part has the role as 

the nucleus which has almost a quantum particle 

energy which is concentrated; otherwise the 

extended part has the role as the cloud which 
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surrounds the singularity part. In addition, we can 

conclude that the singularity part is responsible for 

the detection in particle detector and the extended 

part is responsible for interference process. For the 

general case, we have difficulties to make the 

mathematical function model describing the 

singularity and extended parts. In reviewed articles 

[10, 11], the realistic model can be formulated only 

for the free particle solution. For this solution, the 

amplitude has the linear differential equation, so 

the superposition principle must be hold.    

In the language of nonlinear master 

Schrödinger, unfortunately, we can’t make 

associate with eigenvalue such as in ordinary 

quantum mechanics. However, one of the 

interesting cases is that the solution can have the 

solution like soliton. From many textbooks, we 

know that the soliton solution becomes a favorite 

model to describe the particle rather than wave 

packets because of its characteristic solution. This 

case was initially studied by Gueret and Vigier by 

adding a new parameter in quantum potential term 

[10]. 

 

2.  Mathematical Solution  

 

First, we initially consider about the 

mathematical formula about the nonlinear master 

Schrödinger which combine classical Hamilton-

Jacobi and continuity equations, for further details 

can be found in [6, 9] or for reviewing see also 

[10]. In one-dimensional case the corresponding 

equation is expressed as 
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is called the quantum potential. Then, the 

corresponding Hamilton-Jacobi and the continuity 

equations for the harmonic oscillator potential can 

be written 
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The formulation of the corresponding Hamilton-

Jacobi and continuity equations are given in 

appendix. 

We make an ansatz solution for (4) as the 

separation of variables between space and time                        
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It is easy to show that the final solution for the 

phase has the form 
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where E is total energy of the system.  

The amplitude solution can be obtained by 

substitution (7) into (5) and using the separation of 

variables again for the amplitude as  
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one will get the solution 
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where K and C are constants. Here we have 

inserted the constant i in the solution for the time 

part in order to get the normalization constant, so 

we expect to get the value of probability to find the 

particle in the certain interval space. 

The wave solution for the nonrelativistic 

particle motion in a harmonic oscillator potential 

for the nonlinear master Schrödinger equation can 

be written as 
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We can see that the wave function can’t be 

normalized for all space. 
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3.  Conclusion 

 

In this paper we have mathematically 

considered the nonrelativistic particle motion in 

harmonic oscillator potential for nonlinear master 

Schrödinger. In using the nonlinear master 

Schrödinger, one has to assume that two classical 

motion equations, Hamilton-Jacobi and continuity 

equations, still hold in microscopic level. For the 

solution of the harmonic potential, we found that 

the wave function can’t be normalized rather than 

in ordinary quantum mechanics at the same 

potential. 

The final result of the wave function has 

shown to us that no corresponding eigenenergy in 

this system. In addition, we also can not calculate 

the observable quantities like in ordinary quantum 

mechanics, such as the expectation of energy, 

momentum, and even position. However, we still 

have chance to define the normalization constant, 

so the probability finding the particle for the 

certain interval in the space can be found. From the 

solution above, we also see that the wave solution 

can’t define the singularity and extended parts. 
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5. Appendix 

 

The nonlinear master Schrödinger equation in 

three dimensions has the form 
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with the general solution 
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       In the classical mechanics, three-dimensional 

Hamilton-Jacobi and continuity equations are 

defined 
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where all the symbols have their usual meaning. 

For more detail, one can see the following 

textbooks [12, 13].  In the nonlinear master 

Schrödinger, those symbols are transformed by the 

following relations 
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and the normalization condition for all space reads 
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        For finding the solution for amplitude and 

phase in the equation above, one can use the result 

of the following integral 
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