### Optimization of Trial Wave Function in Determining the Ground State Energy of Helium Atom

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Bransden, B.H. & Joachain, C.J. 1983. Physics of Atoms and Molecules. New York: John Wiley and Sons

Eisberg, R. 1985. Quantum Mechanics of Atoms, Molecules, Solids, Nuclei, and Particles. Second Edition. New York: John Wiley and Sons

Fitzpatrick, R., 2010. Helium Atom. Downloaded from http://farside.ph.utexas.edu/ teaching/qmech/lectures/node128.html on Mei 25, 2018

Gasiorowicz, S. 2000. Quantum Physics - Second Edition. Singapore: John Wiley and Sons (Asia)

Griffith, D. 1995. Introduction to Quantum Mechanics. New Jersey: Prentice Hall

Hu, X.-Q., Xu, J., Ma, Y., & Zheng, R.-L. 2006. Four-Parameter Scheme for Ground Level of Helium Atom. Commun. Theor. Phys. 45(5): 906-910

Kramida, A., Ralchenko, Yu., Reader, J., & NIST ASD Team. 2018. NIST Atomic Spectra Database (ver. 5.5.6). National Institute of Standards and Technology, Gaithersburg, MD. Downloaded from https://physics.nist.gov/cgi-bin/ASD/ie.pl on May 28, 2018

Levine, I.N. 1999. Quantum Chemistry - Fifth Edition. New Jersey: Prentice Hall

Mathews, J. & Fink, K. 1999. Numerical Methods Using Matlab - Third Edition. New Jersey: Prentice Hall

Powell, J.L. & Crasemann, B. 1961. Quantum Mechanics. London: Addison Wesley Publishing Company

Yulianto Y., & Su’ud, S. 2016. Investigation of nuclear ground state properties of fuel materials of (_^232)Th and (_^238)U using Skyrme-Extended-Thomas-Fermi approach method. Journal of Physics: Conference Series. 739: 012142.

DOI: https://doi.org/10.15294/jf.v8i1.14614

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats