Pengaktifan Kimia Berbantuan Gelombang Mikro Karbon Aktif dari Kulit Kacang dengan Waktu Pra-karbonisasi yang Berbeda

Awitdrus Awitdrus, Dewi Mulfida, Rakhmawati Farma, Saktioto Saktioto, Iwantono Iwantono

Abstract


Karbon aktif berbahan dasar kulit kacang (Arachis hypogaea L) disintesis menggunakan metode pengaktifan kimia berbantuan gelombang mikro. Kulit kacang dipra-karbonisasi selama 2 jam, 3 jam dan 4 jam pada temperatur 200 oC. Pengaktifan kimia dilakukan menggunakan kalium hidroksida dengan rasio massa pra-karbonisasi dan kalium hidroksida adalah 2:1 selama 24 jam. Iradiasi gelombang mikro dilakukan pada daya keluaran 630 watt selama 20 menit. Sifat fisika karbon aktif dikarakterisasi menggunakan difraksi sinar-X untuk mengetahui struktur mikro, isoterma adsorpsi/desorpsi N2 untuk mengetahui parameter porositas, serta infra merah transformasi Fourier untuk mengetahui struktur rantai karbon aktif. Pola difraksi sinar-X menunjukkan bahwa semua karbon aktif memiliki struktur turbostratik yang ditandai dengan adanya puncak (002) dan (100). Luas permukaan dan volume pori karbon aktif tertinggi adalah 153 m2/g dan 0,064 cm3/g untuk karbon aktif dengan waktu pra-karbonisasi selama 2 jam. Struktur rantai karbon menunjukkan adanya  gugus fungsi P=O, C-O, C-C, C-H pada bilangan gelombang 1031 cm-1, 1609,67 cm-1, 2363,87 cm-1, dan 2867,31 cm-1.

Full Text:

PDF

References


Ahmed, M.J. and Theydan S.K.. (2014). Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. Journal of Analytical and Applied Pyrolysis 105, 199–208.

Baccar, R., Sarrà, M., Bouzid, J., Feki, M., and Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211–212, 310-317.

Coutinho, A.R., Rocha, J.D. & Luengo, C.A. (2000). Preparing and characterizing biocarbon electrodes. Fuel Processing Technology 67: 93-102.

Crini, G. (2006). Non-conventional low-cost adsorbent for dye-removal: A review. Bioresource Technology 97(9), 1061-1085.

Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X. and Li, Y. (2014). Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects 446, 1-7.

Foo, K.Y. and Hameed, B.H. (2012). Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous and Mesoporous Materials 148, 191–195.

Gad, H.M.H. and El-Sayed, A.A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials 168, 1070-1081.

Gao, J.J, Qin, Y., Zhou, T., Cao, D., Xu, P., Hotchstetter, D., and Wang, Y. (2013). Adsoprtion of methilene blue onto activated carbon produced from tea (Camellia sinensi L.) seed shell. Journal of Zhejiang University Science B 14(7), 650–658.

Hameed, B.H. and Daud F.B.M. (2008). Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal 139(1), 48–55.

Kalderis, D., Bethanis, S., Paraskeva, P. and Diamadopoulos, E. (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times.Bioresource Technology 15, 6809-6816.

Ma, X. and Ouyang, F. (2013). Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science 268, 566-570.

Marsh, H. and Rodrigues Reinoso. (2006). Activated Carbon. Elselvier Ltd. Holland.

Mudoga, H.L., Yucel, H., and Kincal, N.S. (2008). Decolorization of sugar syrups using commercial and sugar beetpulp based activated carbons,” Bioresource Technology 99, 3528–3533.

Park, J.-H., Ok, Y.S., Kim, S.-H., Cho, J.-S., Heo, J.-S., Delaune, R.D. and Seo, D.C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77-83.

Phalakornkule, C., Foungchuen, J. and Pitakchon, T. (2012). Impregnation of Chitosan onto Activated Carbon for High Adsorption Selectivity towards CO2: CO2 Capture from Biohydrogen, Biogas and Flue Gas. Journal of Sustainable Energy & Environment 3, 153-157.

Qu, D. (2002). Studies of the activated carbon used in double-layer supercapacitors. Journal of Power Sources 109, 403-107

Sayğılı, H. and Güzel, F. (2016). High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production 113, 995-1004.

Sing, Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57, 603–619.

Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., and Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy 48, 250-256.

Yu, Z., Peldszus, S., and Huck, P.M. (2008). Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon. Water Research 42(12), 2873-2882.




DOI: https://doi.org/10.15294/jf.v8i2.16974

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats