Investigasi Pengaruh Daya RF terhadap Morfologi Silicon Nanowire pada Penumbuhan dengan Metode PECVD

Aulia Fikri Hidayat, Toto Winata

Abstract


Silicon nanowire (SiNW) merupakan material berstruktur nano yang pemanfaatannya cukup luas, diantaranya yaitu sebagai material divais elektronik, sebagai material biosensor, dan sebagai sistem pembawa obat. Penumbuhan SiNW salah satunya dapat dilakukan dengan metode PECVD (plasma-enhanced chemical vapor deposition). Nikel digunakan sebagai katalis dalam penumbuhan SiNW pada penelitian ini. Lapisan tipis nikel diberi perlakuan annealing pada suhu 600°C selama 6 jam untuk memperoleh butiran nikel sebagai pemandu tumbuhnya nanowire. Penumbuhan SiNW dilakukan dengan metode PECVD dengan memvariasikan daya frekuensi radio (RF) reaktor sebesar 8 watt, 10 watt, dan 20 watt. Diameter rata-rata untuk daya 8 watt, 10 watt, dan 20 watt berturut-turut adalah 1143,17 nm; 1490,27 nm; dan 2605,26 nm. Morfologi permukaan dilihat dengan pencitraan scanning electron microscope (SEM). Rasio aspek wire dengan daya RF penumbuhan 8 watt, 10 watt, dan 20 watt diinvestigasi dengan pencitraan SEM penampang lintang dengan hasil berturut-turut sebesar 23,3; 3,13; dan 0,33.


Keywords


daya RF; morfologi; nikel; PECVD; silicon nanowire

Full Text:

PDF

References


Cervenka, J., Ledinsky, M., Stuchlik, J., Stuchlikova, H., Bakardjieva, S., Hruska, K., Fejfar, A., & Kocka, J. (2010). The structure and growth mechanism of nanoneedles prepared by plasma-enhanced chemical vapor deposition. Nanotechnology. 21: 1-7

Chong, S.K., Goh, B.T., Aspanut, Z., Muhamad, M.R., Dee, C.F., & Rahman, S.A. (2011). Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique. Thin Solid Films. 519: 4933-4939

Das, B., Mandal, K., Sen, P., & Bandopadhyay, S.K. (2008). Effect of aspect ratio on the magnetic properties of nickel nanowires. J. Appl. Phys. 103: 1-5

Feng, B., Deng, J., Lu, B., Xu, C., Wang, Y., Wan, J., & Chen, Y. (2018). Nanofabrication of silicon nanowires with high aspect ratio for photo-electron sensing. Microelectronic Engineering. 195: 139–144

Gusev, E.Y., Jityaeva, J.Y., Geldash, A. A., dan Ageev, O.A. (2017). Effects of PECVD temperature and RF power on surface structure and refractive index of amorphous and polycrystalline silicon films. Journal of Physics: Conf. Series. 917: 1-4

Hofmann, S., Ducati, C., Neill, R.J., Piscanec, S., Ferrari, A.C., Geng, J., Dunin-Borkowski, R.E., dan Robertson, J. (2003). Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. Journal of Applied Physics. 94 (9): 6005-6012

Howling, A.A., Dorier, J., Hollenstein, Ch., Kroll, U., dan Finger, F. (1992). Frequency effects in silane plasmas for plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A. 10(4): 1080-1085

Jones, S.J., Williamson, D.L., Liu, T., Deng, X., dan Izu, M. (2000). Comparison of Structural Properties and Solar Cell Performance of a Si:H Films Prepared at Various Deposition Rates using 13.56 and 70 MHz PECVD Methods. Mat. Res. Soc. Symp. Proc. 609: 1-7

Matsumura, H., Umemoto, H., dan Masuda, A. (2004). Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon. Journal of Non-Crystalline Solids. 338–340: 19-26

Park, Y., Yoon, S., Park, J., & Lee, J. (2016). Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity. NPG Asia Materials. 8: 1-8

Peng, F., Su, Y., Ji, X., Zhong, Y., Wei, X., & He, Y. (2014). Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials. 35: 5188-5195

Shah, A. Thin-film silicon solar cells. In: McEvoy (Ed). (2012). Practical Handbook of Photovoltaics Fundamentals and Applications. Cambridge: Academic Press

Shao, M.W., Mao, D.D.D., & Lee, S.T. (2010). Silicon nanowires – synthesis, properties, and applications. European Journal of Inorganic Chemistry. 4264-4278

Shashaani, H., Faramarzpour, M., Hassanpour, M., Namdar, N., Alikhani, A., & Abdolahad, M. (2016). Silicon nanowire based biosensing platform for electrochemical sensing of mebendazole drug activity on breast cancer cells. Biosensors and Bioelectronics. 1-8

Smyrnakis, A., Almpanis, E., Constantoudis, V., Papanikolaou, N., & Gogolides, E. (2015). Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance. Nanotechnology. 26(8): 1-12

Supu, A. (2005). Penumbuhan lapisan tipis a-Si:H, μc-Si:H dan poly-Si dengan metode hot wire cell CVD untuk divais elektronik dan optoelektronik. Disertasi. Bandung: Sekolah Pascasarjana Institut Teknologi Bandung

Usman, I. (2006). Penumbuhan lapisan tipis silikon amorf terhidrogenasi dengan teknik hwc-vhf-pecvd dan aplikasinya pada divais sel surya. Disertasi. Bandung: Sekolah Pascasarjana Institut Teknologi Bandung

Wanekaya, A.K., Chen, W., Myung, N.V., & Mulchandani, A. (2006). Nanowire-based electrochemical biosensors. Electroanalysis. 18(6): 533-550

Yu, L., O’Donnell, B., Alet, P., Conesa-Boj, S., Peiro, F., Arbiol, J., dan Cabarrocas, P. R. (2009). Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology. 20: 1-5.




DOI: https://doi.org/10.15294/jf.v9i1.18811

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats