

Jurnal Pendidikan IPA Indonesia

http://journal.unnes.ac.id/index.php/jpii

STUDENTS' METACOGNITIVE SKILLS FROM THE VIEWPOINT OF ANSWERING BIOLOGICAL QUESTIONS: IS IT ALREADY GOOD?

A. Fauzi*1 and W. Sa'diyah²

¹Department of Biology Education, Universitas Muhammadiyah Malang, Indonesia ²Tsukuba Life Science Inovation, School of Integrative and Global Majors, University of Tsukuba, Japan

DOI: 10.15294/jpii.v8i3.19457

Accepted: April 28, 2019. Approved: September 28th, 2019. Published: September 30th, 2019

ABSTRACT

Recent research in the science learning field emphasizes the importance of science learning that can empower 21st Century skills and implement metacognition-based learning. Metacognition is one of the foremost successful factors of learning achievement, which is the implementation in Indonesian schools is still being questioned. The present quantitative study aimed at gathering information on the profile of students' metacognitive skills in Malang and figuring out whether the students' grader influence metacognitive skills or not. This study was in ex post facto research which involves five levels of independent variables (grade level) and metacognitive skills as the dependent variable. The study involved 458 students (99 students in grade VII, 98 students in grade VIII, 98 students in grade IX, 77 students in grade X, and 86 students in grade XI) as the participants selected by homogeneous purposive sampling technique. The data of the metacognitive skills were collected by using Metacognitive Skills Rubric integrated with essay questions as the instrument. The collected data were analyzed through descriptive statistics and one-way ANOVA. The results of this study informed that the students' metacognitive skills in Malang at each grade were categorized in "very low". However, the level of grade significantly influenced the students' metacognitive skills. The Senior High School (SHS) students possessed the highest level of metacognitive skills, and the students of grade VII of Junior High School (JHS) were at the lowest level. Senior High School students have better metacognitive skills than JHS students due to this kind of skills could develop by the increase of students' grades in the process of education. The findings of this study also reveal the low level of students' metacognitive skills. Therefore, the learning process is recommended to implement various learning form that can empower students' metacognitive skills optimally.

© 2019 Science Education Study Program FMIPA UNNES Semarang

Keywords: metacognition, metacognition empowerment, metacognitive skills

INTRODUCTION

The teaching of science in the schools is expected to facilitate students to not only acquire the skills of 21st century but also encourage them to be an independent learner (Chalkiadaki, 2018) and long-life-learning person (Milić, 2013). In order to fulfill the expectations, the implementation

*Correspondence Address E-mail: ahmad_fauzi@umm.ac.id of teaching science in the schools has to increase the learning motivation of the students (Baldovino, 2018; Lord et al., 2010). The process of teaching and learning in the class should also enable the students to recognize their ways of learning (Sagitova, 2014). Also, the learning designs must be created to promote student to could regulate their learning process (Gonzalez-DeHass, 2016; Moos & Ringdal, 2012). Along with it all, science learning is expected to produce students who can process of learning. That is why developing students' metacognitive skills are one of the crucial steps to achieve learning goals.

Metacognition is one of the processes of executive function, which is relevant to the process of learning (Gurbin, 2015). The students who have adequate metacognitive skills can monitor and control their thinking process (Patterson, 2011). The higher the level of the students' metacognition, the better their awareness of the learning process. Further, the students also possess good self-reflection (Metcalfe & Schwartz, 2018). They will quickly recognize which materials they have not known yet (Conley, 2014) and decide to stop, repeat, or continue their learning process (Miller, 2017). In short, the students will be able to effectively manage their ways of learning and know the appropriate time to learn.

If metacognition concept is taught effectively in the schools, the students will significantly improve their achievements. In other words, when the teachers integrate metacognition-based learning to their teaching, the students' learning outcomes are optimally enhanced (Perry et al., 2019). These statements are in line with the findings of previous studies which revealed that metacognitive skills had positive correlation with students' learning achievement (Mozafari et al., 2016). It does not only correlate with lower-order thinking skills achievement (Siswati & Corebima, 2017a) but also on critical thinking skills (Magno, 2010). Besides, metacognition also positively correlates with reasoning ability (Haryani et al., 2018) and implementing the knowledge effectively (Scharff et al., 2017).

One effective way to empower metacognition is when the teacher teaches various biological concepts to their students. Various studies also reported, by applying the appropriate learning design, biology learning was able to effectively empower student metacognition (Herlanti et al., 2017; Listiana et al., 2016). The good development of student metacognition will be seen from their ability to respond to the biological problems presented by the teacher. The statement is based on the references that inform a person's ability to communicate the results of their analysis or evaluation of a problem is one of the leading indicators in metacognitive skills (Corebima, 2009; Patterson, 2011).

The majority results of the studies about metacognition showed that metacognitive skills were different from metacognitive knowledge (Perry et al., 2019). That was why, several previous metacognitive studies were focusing on the

do the planning, monitoring, and evaluating their domain of metacognitive skills (Amin & Sukestiyarno, 2015; Colbert et al., 2015; Darmawan et al., 2018; Palennari et al., 2018). Some of the studies also reported that metacognitive skills had significantly influenced the learning outcomes (Siswati & Corebima, 2017b, 2017a), critical thinking skills (Diella & Ardiansvah, 2017), and other academic competences. Also, the metacognitive skills of the students could be seen from their communicative competences during interaction with others (Patterson, 2011). These previous findings that informed the various effects of metacognitive skills led the researchers to conduct studies about the development of metacognitive skills throughout the teaching process.

> The implementation of metacognitionbased learning model is the most effective way for the teachers to enhance the metacognitive skills. The learning models are, for instance, problembased learning (Haryani et al., 2018), simaseric (Darmawan et al., 2018), search-solve-create-share (Corebima, 2017), project-based learning (Pavkov-Hrvojevic et al., 2016), and inquiry-based learning (Adnan & Bahri, 2018). Furthermore, some learning techniques such as reflection, selfassessment (Colbert et al., 2015; Pedone, 2014), feedback (Colbert et al., 2015), and mapping concept (Pedone, 2014) are also strongly recommended to develop students' metacognitive skills.

> Unfortunately, most of the Indonesian teachers are rarely implement teaching designs which develop students' metacognitive skills. The statement is supported by the fact that reports the lack of Indonesian students' metacognitive skills (Diella & Ardiansyah, 2017; Nurajizah et al., 2018; Susilo et al., 2019; Tjalla & Putriyani, 2018; Yanti et al., 2017). This condition is indicated to occur in many regions in Indonesia, both in remote areas and in big cities.

> The observations conducted in several schools in Malang in July 2018 also informed the same thing. The results of observations inform that many science teachers still often apply conventional learning. Some state schools in the Malang City area have indeed implemented some metacognition-based learning. PBL is the most often implemented by teachers at the school. However, most private schools in the Malang City area and most public and private schools in the Malang Regency area still apply learning that is less able to empower students' metacognition. Similar conditions were also seen in several schools in the Batu city area.

> The condition is also increasingly reinforced from student worksheets that are not designed to empower student metacognition. There

are many worksheets with unclear learning syn-Research that examines students' metacogtax. Most schools have also involved practicum nition improvement from one class level to the activities in the laboratory. Unfortunately, most class level needs to be conducted. This research of the practicums are not designed based on inwill inform how the role of the learning process quiry activities. The practicum handbook is dein schools in empowering students' metacognisigned like a "cookbook" where students only tion. Such information will also be the basis for imitate the work procedures in the practicum, evaluating and reflecting the learning process in from determining the title of practicum, observaschools regarding metacognitive-based learning. Also, the research should use metacognition tion activities, data collection, to the format of tables in the reporting of practicum results. instruments that more suited to the characteris-Related to the observation results, the tics of Indonesian students. Therefore, the purlow awareness of teachers on developing metapose of this study was to examine the metacognition profiles of Junior High School/JHS (grades cognitive skills and their inadequate knowledge of metacognition has also been reported in the VII – IX) and Senior High School/SHS students previous study (Dewi et al., 2017). The learning (grade X and XI) using essay-based metacognitiassessment which does not base on higher-level ve skill instruments.

thinking (Winarti et al., 2015) and unsupported The current study presents the profile of media and learning resources (Dewi et al., 2017) students' metacognitive skills in Malang. It does are also contributing to the problem. Interestingnot only investigate the profile of metacognitive ly, although the majority of studies informed the skills of students in a particular grade but also lack of metacognitive skills of the students, some students in some grades. It makes the study diffeother studies were on the contrary (Amin & Surent from similar previous studies. Furthermore, kestiyarno, 2015; Palennari et al., 2018). Therefothis study employs different characteristics than re, future studies on students' metacognition with other metacognitive studies. Firstly, the data on different designs, perspectives, and instruments metacognitive skills are collected by using diffeare highly recommended to be carried out to exarent instruments with previous studies. Secondly, this study involves greater participants than in otmine an in-depth analysis of metacognitive skills. Specifically, studies which aim at investigating her previous studies. Thirdly, this study also exametacognition of Junior and Senior High School mines if the students' grades correlate to the level students in Indonesia are still few in numbers. of students' metacognitive skills.

Metacognition research has been carried out in Indonesia over the past few years. The most current research was studying the effect of applying learning models or strategies on the empowerment of students' metacognition, such as inquiry-based learning (Nunaki et al., 2019), project-based learning (Husamah, 2015), and problem-based learning (Haryani et al., 2018). Some other studies limit their research to the development of metacognition measurement instruments (Corebima, 2009; Zulfiani et al., 2018), while other studies aimed at developing metacognition-based learning source (Dewi et al., 2018) or media (Siagian et al., 2019). Other studies have indeed examined the metacognition profile of students, but only involved class XII high school students (Yanti et al., 2017) or involved first year undergraduate students only (Palennari et al., 2018). Both studies use the Metacognitive Awareness Inventory (or its adaptation) in measuring metacognition, a metacognition instrument that is indicated less able to describe the metacognition level of Indonesian students (Corebima, 2009). The questionnaire-based instrument was considered unable to describe the valid level of student metacognition.

METHODS

The present quantitative study includes ex post facto research design which aimed at presenting the profile of students' metacognitive skills in Malang. The study was limited in the metacognitive profile of the Junior High School (grades VII – IX) and Senior High School students (grade X and XI) in Malang. The steps of the study were developing the instruments, piloting and trying out the question items, selecting the participants, analyzing the data, and interpreting the findings. The collection of the data was carried out by conducting test using the developed instrument in the targeted schools that were randomly selected. The administration of the test involved the students of Department of Biology Education, the University of Muhammadiyah Malang who were joining the teaching apprentice program in their schools.

The study population was all high school students in Malang, while the sample was 458 students selected through homogenous purposive sampling. The homogenous sample creates based on school academic level. The selected schools

were categorized as moderate school, those schools are classified neither high academic nor low academic level (the names of these schools are not mentioned in detail in this study for ethical reasons). In detail, they were 99 students in grade VII, 98 students in grade VIII, 98 students in grade IX, 77 students in grade X, and 86 students in grade XI. They were selected randomly from nine Junior High Schools and nine Senior High Schools around Malang municipality.

The data of metacognitive skills were obtained from the scores of students' responses to the essay questions. There were ten-question items with cognitive level minimum C4 that should be answered by the students. The validity and reliability of the question items were ensured by Pearson Correlation and Cronbach Alpha analysis. In detail, the topics asked on each item, and result of the validation test could be seen in Table 1. The student's responses were scored based on the Rubric of Metacognitive Skills developed by Corebima (2009). The rubric was a Likert model with the scale 0 - 7 and had some criteria: the construction of sentences, the systematics of responses, the grammatical patterns, the explanation of responses, and the accuracy of responses. The data in the form of students' responses, then, were calculated into metacognitive skills data by using formula (1). In formula (1), y2 is combined score of metacognitive skills and mastery of concepts; y1 is students' concept mastery score; and x is students' metacognitive skills score.

$$y_2 = \frac{y_{1+2x}}{3}$$
(1)

Table 1. List of Topics and Validity Test Results

 of Test Items

Items	Topics			
1	The role of biology in aspects of hu- man life			
2	Biological relations with other branches of science			
3	Application of scientific attitude			
4	Cells			
5	Relations between levels of organiza- tion of life			
6	The role of viruses in human life			
7	Components of the ecosystem			
8	Difference between Fungi and green plants			
9	The theory of evolution			
10	The role of nutrition for human life			

The scores of students' responses were analyzed by using descriptive and analytical statistics. Firstly, the students' average scores in every grade were calculated. The level of students' metacognitive skills was based on categories presented in Table 2. Afterward, the data of students' competencies were analyzed by employing one-way analysis of variance (ANOVA) to reveal if there was a different level of competences in the different grades. The Least Significant Difference (LSD) was chosen as the additional analysis after ANOVA. The result of LSD analysis was presented in the chart.

Table 2. The	Categories of	Metacognition 1	Level
--------------	---------------	-----------------	-------

Scores	Categories
86-100	Very good
76-85	Good
60-75	Enough
55-59	Low
0-54	Very low

RESULTS AND DISCUSSION

Metacognitive skills play a crucial role in supporting students' learning achievement. The present study analyzed the metacognitive skills of the students in grade VII to XI in Malang. The data of metacognitive skills were presented in Table 3. Based on Table 3, it was shown that the average skills of critical thinking of the students in all grades were categorized as "very bad". The findings implied that the development of students' metacognitive skills in Malang was not maximum.

 Table 3. Metacognitive Skills Mean Scores of Junior and Senior High School Students in Malang

Grades	Mean ± SD	Category
VII	10.61 ± 5.866	Very low
VIII	13.09 ± 7.341	Very low
IX	15.53 ± 6.483	Very low
Х	19.42 ± 7.288	Very low
XI	17.58 ± 6.768	Very low

The low level of metacognitive skills of the students in Malang revealed in this study. It was consistent with the information about metacognitive level of the students in other regions as described by the previous studies such as in Sukabumi (Nurajizah et al., 2018), Tasikmalaya (Diella & Ardiansyah, 2017), Bandar Lampung (Yanti et al., 2017), Papua (Tjalla & Putriyani, 2018), Medan (Diella & Ardiansyah, 2017), and Semarang (Susilo et al., 2019). The information was based on the actual studies and the profile of students' competence in which the researchers, according to the ethics of research, were on the neutral side. In other words, the information obtained from the present study or other previous studies were the real condition of the students in the schools.

The students' unfamiliarity with the model of question items as the instrument in this study might have interfered the findings. It was due to the measurement of students' metacognitive skills used in this study was based on their abilities in expressing the idea after analyzing and evaluating the information presented in the test. The students who have high level of metacognitive skills would give grammatically appropriate responses and well-structured sentences (Corebima, 2009). Then, the problem was if the students were barely trained to evaluate and analyze their problems, they would encounter the difficulty in giving the proper responses in the test. Some results of previous studies supported this information in which Indonesian students were rarely, even never, exposed with high order thinking questions (Kusaeri et al., 2019). Therefore, they had some problems in providing responses to the questions (Hadi et al., 2018).

Another internal factor that contributed to the lack of students' metacognitive skills was Some schools that have implemented metheir communicative competences. As explained tacognition-based learning are more concentrain the beginning, the ability to respond to the ted in the Malang City area. These schools are questions by using well-structured and underdominated by public schools where PBL is the standable language was one of the indicators of most common learning model implemented by one's metacognitive skills. This statement was teachers in these schools. A worksheet from one supported by Patterson's (2011) explanation staof the state schools was able to show the PBL ted that a person who had adequate metacognilearning syntax that students must follow cleartive skills would be able to communicate with ly. On the other hand, other public schools and most private schools in the Malang City area others in the real context of communication and assured their utterances were clearly underhave not yet implemented such learning. Disstood. Excellent communication ability was mocussion activities do appear in some learning, nitoring the utterances a person said and wrote but the learning flow is less able to reflect one and evaluating the understanding of interlocuof the learning models that could empower metors about what being communicated. However, tacognition. this study revealed that the communicative com-In line with several schools in Malang petences of Indonesian students, both spoken City, many schools in Malang Regency also still and written, was categorized as "low' (Wangsa implement learning that was less able to emet al., 2017), even some of them did not convey power students' metacognition. Some teachers a clear and understandable meaning when commore often instruct students to answer questions on student worksheets then class discussions municating (Musliah et al., 2015). As a result, it was not surprising when this study showed the take place. Practicum activities were also carried low level of students' metacognitive skills. out using practical manuals that guide each step

The concern and insufficient knowledge of teachers about metacognition also became an obstacle in developing students' metacognitive skills (Rahman et al., 2010). One of the indicators was the implementation of teaching and learning activities that was only teachercentered – the teacher was delivering concepts and materials to the students. It was emphasized by the fact that in many Indonesian schools, the teachers were rarely implementing student-centered teaching - the learning activities were dominated by students while the teachers as to be the facilitator (Kurniati & Surya, 2017; Zulfikar, 2013). The application of conventional model of teaching inhibited the development of students' metacognitive skills during the learning process (Alzahrani, 2017). Moreover, the condition was worsened with the limited availability of learning resources and assessment that had not designed based on higher critical thinking skills (Dewi et al., 2017; Ramdiah et al., 2019).

The observation results that conducted before, during, and after the process of taking quantitative data in this study also reveal the reason why students' metacognitive skills level in Malang still in the low category. Observations that have been conducted in several schools were generally showed that a small number of schools have implemented metacognition-based learning. Most of the remaining schools had not yet implemented such learning. of students, from the beginning of the practicum to how to report the results of the practicum. As a result, the inquiry process was not well realized in the practicum activities.

The activities of the internship teachers distributed in many schools in the Malang City and Batu City also inform the same thing. Yet, almost all internship teachers do not understand what metacognition is and how to empower it. The accompanying teacher was also not able to guide the internship teachers to design and implement various learning models that could improve students' metacognition.

Smirnov test, the data of this study were normally distributed (p-value grades VII, VIII, IX, X, and XI were .052; .091; .200; .052; and .200). The result of Levene's test also informed that the variance among groups were homogeny (pvalue = .056). Therefore, the data of the present study fulfilled the requirements to be analyzed by using one-way ANOVA. The summary of the ANOVA test was presented in Table 4. The result of ANOVA analysis described that the students' grade had significantly influenced the students' metacognitive skills in Malang [F (4;453) = 23.984, p < .005; $\eta p 2 = .175$]. There was a significant difference in metacognitive skills average; that was why LSD was utilized to carry out further analysis. The result of LSD analysis was presented in Figure 1.

Table 4. The Summary of ANOVA Test Results on the Effect of Grade Level on Metacognitive Skills

df	F	Sig.	Partial Eta Squared
4	23.984	<.005	.175
453			
	4	4 23.984	4 23.984 <.005

It could be seen in figure 1, the students in grade VII significantly possessed the lowest metacognitive skills than the other grades. The students in grade VIII acquired higher level of metacognitive ability than students in grade VII. Then, the average of metacognitive skills performed by the students in grade IX was remarkably higher than the students in the lower grades. Furthermore, the average of metacognitive skills of the students in Senior High Schools was also better than the students of Junior High Schools. In conclusion, the finding of this study indicated that the higher the grades of the students, the better their levels of metacognitive skills.

Furthermore, based on the Kolmogorov- Figure 1. The Summary of LSD Test Results. Differences Notation Represents the Mean Difference at the Significance Level 0.05

> The improvement of students' metacognitive skills from a lower grade to the higher grade described that this kind of skills could develop by the increase of students' grades in the process of education. The result of this study was in consistent with the previous studies reported that the level of education was an important factor in contributing to the quality of students' critical thinking (Siswati & Corebima, 2017c). The finding was also supported by Coskun (2018) who conducted a study on the contribution of students grades to their metacognitive abilities. The metacognitive skills developed when the aspect of cognitive was regularly used. A person who pursued higher education would receive and respond to various information by using their cognitive abilities. Hence, the longer a person involved in educational process, the frequent he used their cognitive process. In other words, students would be more competent in term of metacognitive ability when their grades increased. To sum up, it was undeniable that the higher the students' grades, the better their levels of metacognitive skills.

> Although the average of students' metacognitive skills improved, based on Table 3, their knowledge of metacognition was still categorized in "very low". It implied that even though the metacognitive skills had been improved during the teaching and learning process, it had not been optimal yet. In addition, the metacognitive skills of students in grade X and XII were not significantly different which is indicated that the learning process in grade XII was not effective to enhance the students' metacognitive level. In terms of developing students' metacognition, the findings of this Indonesian study were quite different with what have been found by some studies carried out by the researchers in other countries. They reported that the development of students' metacogniti

on had successfully conducted, such as in Turer training are highly needed in order to create key (Coskun, 2018) and India (Gopinath, 2014). well-trained teachers so that they are ready to de-Nevertheless, the lack of students metacognitive velop the metacognitive skills of their students. skills was not only happened in Indonesia since One of the teacher professionalisms programs there was a study showing students metacognitithat are considered effective and has significant ve profile that had a similar result with this study impacts to the quality of students' metacogniti-(Jaleel & Premachandran, 2016). ve development is Lesson study. Lesson study is In responding to the result of this prea teacher professionalism development program sent study on students' metacognitive skills, the which facilitates teachers to improve their teachresearcher suggests that the quality of educatioing quality through collaborative activities (Isonal system and implementation of teaching and zaki, 2013; Watanabe, 2018). The collaborative learning process in Indonesia must be improved. activities consist of planning, evaluating, and The improvement is aimed at maximizing the reflecting the teaching and learning process togetdevelopment of students' metacognitive skills. her. As a result, teachers and the team are optimi-The most crucial and essential step is improving zing the function of learning to develop students' teachers' skill to design and implement metacogmetacognitive skills. Besides, studies about the nition-based teaching in their classroom, as they improvement of metacognitive skills and metaplay a crucial role in teaching process. Some of analyses studies on metacognition are suggested the learning models that can be carried out by the to be carried out in Indonesia. This kind of stuteachers, for instance, are problem-based learning dies is needed to gain trend and description of the (Haryani et al., 2018; Panchu et al., 2016), procurrent results (Cavas, 2015; Eğmir et al., 2017; ject-based learning (Sumampouw et al., 2016), Fauzi & Pradipta, 2018). Through the activities, and simaseric (Darmawan et al., 2018). Also, hopefully, the teaching models that have positive some other references suggest a more active moimpacts on the students' metacognition could be del of teaching such as inquiry learning (Adnan identified and collected. Furthermore, informa-& Bahri, 2018; Thomas, 2012), self-reflection action obtained from meta-analyses studies can be tivities (Colbert et al., 2015), and mind-mapping used as a guideline for the future researchers to (Pedone, 2014). conduct other studies.

Besides the enormous numbers of the recommended teaching models, strategies, and techniques, some principles that should be considered by the teachers in order to optimize the students' metacognitive skills. Firstly, the teachers have to believe that their students can change their cognitive function. Secondly, the teachers must be able to encourage students to be aware of the importance of materials that were being discussed. Besides, the teachers should be an expert of designing a set of assessment that is not only measuring the lower-order thinking skills but also developing students metacognition skills such as portfolio (Gencel, 2017) and self-assessa lot of exposures to the students to evaluate their learning should be conducted in order to build the students' awareness and self-efficacy (Miller, 2017). As a result, the students are motivated to decide what have they do to understand the materials that were being discussed. Finally, the teachers have to make their students regularly involve in the continuing metacognition-based learning.

Metacognition is closely related to other ment (Siegesmund, 2017). In this context, giving factors which are used to predict the students' achievement. Metacognition is also significantly correlated with students motivation (Oguz & Ataseven, 2016) which is not only general motivation but also self-efficacy and students achievement goals (Muna et al., 2017). Students who have good metacognitive skills will be more confident during the process of learning (Kisac & Budak, 2014). It will improve their learning achieve-Designing good quality of metacognitive ments. Thus, it is undeniable that metacognition learning is not a piece of cake, particularly for is very important and crucial in the process of teteachers who do not acquire the concept and are aching and learning, so that it is always put as the not familiar with metacognition. Consequently, main subject in the education studies (Peteranetz, professional development programs and teach-2016). In a nutshell, the recommendation based

In the 21st-century education, students are required to access their understanding accurately (Miller, 2017). In this context, the role of teachers is to be an excellent facilitator for the students so that they can implement their learning strategies and be successful learners (Chauhan & Singh, 2014). In order to achieve the goal, metacognition must be the learning priority to improve the students awareness toward the teaching and learning process (Alzahrani, 2017). That is why, in the recent decades, metacognition is considered an essential variable in pursuing positive learning achievement (Millis, 2016).

skills should be taken into account to improve the quality of education in Indonesia.

However, this study has several limitations that need to be addressed in future studies. The choice of schools from moderate levels is one of the limitations of the study. The selection of high- and low-level academic schools seems to need to be done to see students' metacognitive skills generally. In addition, the involvement of different academic level schools can be used to study the effect of academic levels on metacognitive skills. The collecting data process using only one type of instrument is also another limitation of this study. Therefore, the assessment of student metacognition profiles using various other instruments is highly recommended. Some other instruments, e.g. the Metacognitive Awareness Inventory (Schraw & Dennison, 1994) or Metacognitive Strategy Knowledge Test (Karlen, 2017) were recommended for use. The use of Teacher Metacognition Inventory (Jiang et al., 2016), Teachers' Metacognition Scale (Wilson & Adnan, & Bahri, A. (2018, January). Beyond Effective Bai, 2010), or Awareness of Independent Learning Inventory (Meijer et al., 2013) also needs to be done to see the information about metacognition profile of teachers and Pre-service teachers, considering that teaching factors probably cause one of the causes of the low level of students' metacognition.

CONCLUSION

To sum up, the present study presented the profile of students' metacognitive skills in Malang. The findings showed that the metacognitive skills of the students in all grades (VII – XI) were categorized as "very low". Furthermore, the JHS students in grade VII performed the lowest level of metacognitive skills than other grades, while the students in grades X and XI possessed the highest level of metacognitive skills. The results of this study have revealed an unfortunate learning condition. The education process in secondary schools is less able to empower students' metacognitive skills. Information from this research can also be used as a basis for related education service policies and as a primary reference for teachers and education researchers, especially in the Malang region.

Since the findings revealed that the students were lack of metacognitive skills, the development of students' metacognition should be a crucial issue in the education field and research in Indonesia. The potential solution to solve this problem is that teachers are encouraged to imp-

on the findings of this study about metacognitive rove their knowledge and understanding of metacognition and trained to design well-structured metacognition-based learning. By this, it is expected that they can be a good and professional facilitator to their students in order to develop metacognitive skills. Then, the availability of learning resources and metacognition-based assessment should be also taken into account. In addition, content analysis of metacognition studies in Indonesia has to be conducted in order to see the progress of metacognitive development and to find the best solution to solve the problem.

ACKNOWLEDGMENTS

The authors would like to thank the Universitas Muhammadivah Malang. The institution has supported this research, from the beginning to the publication process.

REFERENCES

- Teaching: Enhancing Students' Metacognitive Skill through Guided Inquiry. In Journal of Physics: Conference Series (Vol. 954, No. 1, p. 012022). IOP Publishing.
- Alzahrani, K. S. (2017). Metacognition and Its Role in Mathematics Learning: An Exploration of the Perceptions of a Teacher And Students in a Secondary School. International Electronic Journal of Mathematics Education, 12(3), 521-537.
- Amin, I., & Sukestiyarno, Y. L. (2015). Analysis Metacognitive Skills on Learning Mathematics in High School. International Journal of Education and Research, 3(3), 213-222.
- Baldovino, C. M. V. (2018). Professional Development of Public Secondary School Administrators: Basis for Lifelong Learning Framework. KnE Social Sciences, 3(6), 149-176.
- Cavas, B. (2015). Research Trends in Science Education International: A Content Analysis for the Last Five Years (2011-2015). Science Education International, 26(4), 573-588.
- Chalkiadaki, A. (2018). A Systematic Literature Review of 21st Century Skills and Competencies in Primary Education. International Journal of Instruction, 11(3), 1-16.
- Chauhan, A., & Singh, N. (2014). Metacognition: A Conceptual Framework. International Journal of Education and Psychological Research (IJE-PR), 3(3), 21-22.
- Colbert, C. Y., Graham, L., West, C., White, B. A., Arroliga, A. C., Myers, J. D., ... & Clark, J. (2015). Teaching Metacognitive Skills: Helping Your Physician Trainees in the Quest to 'Know What They Don't Know'. The American Journal Of Medicine, 128(3), 318-324.
- Conley, D. T. (2014). Learning Strategies as Metacognitive Factors: A Critical Review. Eugene, OR: Educa-

tional Policy Improvement Center. Retrieved from https://www.performanceassessmentresourcebank.org/system/files/Raikes Learning Strategies-3.pdf

- Corebima, A. D. (2009). Metacognitive Skill Measureand Behavioral Sciences, 191(2015), 1576-1582. ment Integrated in Achievement Test. In Third Hadi, S., Retnawati, H., Munadi, S., Apino, E., & International Conference on Science and Math-Wulandari, N. F. (2018). The Difficulties of ematics Education(CoSMEd). Penang: SEAMEO High School Students in Solving Higher-Order Regional Centre for Education in Science and Thinking Skills Problems. Problem of Education in the 21st Century, 76(4), 520-532. Mathematics. Retrieved from http://ftp.recsam.edu.my/cosmed/cosmed09/Abstracts-Haryani, S., Wijayati, N., & Kurniawan, C. (2018, FullPapers2009/Abstract/Science%20Parallel%20PDF/Full%20Paper/01.pdf and Students' Reasoning Ability through Prob-
- Corebima, Y. A. D. (2017). Empowering Students' Metacognitive Skills on SSCS Learning Model Integrated with Metacognitive Strategy. The International Journal of Social Sciences and Humanities Invention, 4(5), 3476-3481.
- Coşkun, Y. (2018). A Study on Metacognitive Thinking Skills of University Students. Journal of Education and Training Studies, 6(3), 38-46.
- Darmawan, E., Brasilita, Y., Zubaidah, S., & Saptasari, M. (2018). Enhancing Metacognitive Skills of Students with Different Gender Using Simas Eric Learning Model at State Senior High School 6 Malang. Biosfer, 11(1), 48-57.
- Dewi, N. R., Kannapiran, S., & Wibowo, S. W. A. (2018). Development of Digital Storytelling-Based Science Teaching Materials to Improve Students' Metacognitive Ability. Jurnal Pendidikan IPA Indonesia, 7(1), 16-24.
- Dewi, N. R., Wibowo, S. W. A., & Savitri, E. N. (2017). The Analysis of Science Learning Sources Reviewed from the Meta-Cognitive Ability of the VII Grade the Students of SMP Negeri 2 Boja. Unnes Science Education Journal, 6(2), 1635-1641.
- Diella, D., & Ardiansyah, R. (2017). The Correlation of Metacognition with Critical Thinking Skills Karlen, Y. (2017). The Development of a New Instruof Grade XI Students on Human Excretion ment to Assess Metacognitive Strategy Knowl-System Concept. Jurnal Penelitian dan Pembelaedge about Academic Writing and Its Relation jaran IPA, 3(2), 134-142. to Self-Regulated Writing and Writing Performance. Journal of Writing Research, 9(1), 61-86. Egmir, E., Erdem, C., & Koçvigit, M. (2017). Trends in
- Educational Research: A Content Analysis of Kisac, I., & Budak, Y. (2014). Metacognitive Stratethe Studies Published in" International Journal gies of the University Students with Respect to of Instruction". International Journal of Instruc-Their Perceived Self-Confidence Levels about tion, 10(3), 277-294. Learning. Procedia-Social and Behavioral Scienc-Fauzi, A., & Pradipta, I. W. (2018). Research Methes, 116(2014), 3336-3339.
- ods and Data Analysis Techniques in Educa-Kurniati, I., & Surya, E. (2017). Students' Perception Articles Published by Indonesian Biology tion of their Teacher Teaching Styles. Interna-Educational Journals. Jurnal Pendidikan Biologi tional Journal of Sciences: Basic and Applied Research, 33(2), 91-98. Indonesia, 4(2), 123-134.
- Gencel, I. E. (2017). The Effect of Portfolio Assess-Kusaeri, K., Hamdani, A. S., & Suprananto, S. (2019). ments on Metacognitive Skills and on Attitudes Student Readiness and Challenge in Complettoward a Course. Educational Sciences: Theory ing Higher Order Thinking Skill Test Type for and Practice, 17(1), 293-319. Mathematics. Infinity Journal, 8(1), 75-86.
- Gonzalez-DeHass, A. (2016). Preparing 21st Century Learners: Parent Involvement Strategies for Encouraging Students' Self-Regulated Learning. Childhood Education, 92(6), 427-436.
- Gopinath, S. (2014). Metacognitive Awareness in Teaching and Teaching Competency: A Survey

on Student Teachers at Secondary Level. Research and Method on Education, 4(4), 33-35.

- Gurbin, T. (2015). Metacognition and Technology Adoption: Exploring Influences. Procedia-Social
- March). Improvement of Metacognitive Skills lem-Based Learning. In Journal of Physics: Conference Series (Vol. 983, No. 1, p. 012174). IOP Publishing.
- Herlanti, Y., Mardiati, Y., Wahyuningtyas, R., Mahardini, E., Iqbal, M., & Sofyan, A. (2017). Discovering Learning Strategy to increase Metacognitive Knowledge on Biology Learning in Secondary School. Jurnal Pendidikan IPA Indonesia, 6(1), 179-186.
- Husamah, H. (2015). Blended Project Based Learning: Metacognitive Awareness of Biology Education New Students. Journal of Education and Learning, 9(4), 274-281.
- Isozaki, T. (2013). Lesson Study Research And Practice in Science Classrooms. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 1-4). Dordrecht: Springer Netherlands.
- Jaleel, S., & Premachandran, P. (2016). A Study on the Metacognitive Awareness of Secondary School Students. Universal Journal of Educational Research, 4(1), 165-172.
- Jiang, Y., Ma, L., & Gao, L. (2016). Assessing Teachers' Metacognition in Teaching: The Teacher Metacognition Inventory. Teaching and Teacher Education, 59(2016), 403-413.

Listiana, L., Susilo, H., Suwono, H., & Suarsini, E. (2016). Empowering Students' Metacognitive Skils through New Teaching Strategy (Group Investigation Integrated with Think Talk Write) in Biology Classroom. Journal of Baltic Science Education, 15(3), 391-400.

- Lord, S. M., Nottis, K., Stefanou, C., Prince, M., Chen, J. C., & Stolk, J. (2010, April). Role of Faculty in Promoting Lifelong Learning: Characterizing Classroom Environments. In IEEE EDUCON 2010 Conference (pp. 381-386). IEEE.
- Magno, C. (2010). The Role of Metacognitive Skills and Learning, 5(2), 137-156.
- Meijer, J., Sleegers, P., Elshout-Mohr, M., van Daalen-Kapteijns, M., Meeus, W., & Tempelaar, D. (2013). The Development of a Questionnaire on Metacognition for Students in Higher Edu-Panchu, P., Bahuleyan, B., Seethalakshmi, K., & cation. Educational Research, 55(1), 31-52.
- Metcalfe, J., & Schwartz, B. L. (2018). The Ghost in the Machine: Self-Reflective Consciousness and the Neuroscience of Metacognition. In J. Dunlosky & S. (Uma) K. Tauber (Eds.), The Oxford Handbook of Metamemory (pp. 1-30) [ebook]. Retrieved from https://tinyurl.com/ v2gau272
- Milic, S. (2013). The Twenty-First Century University Pavkov-Hrvojevic, M., Obadovic, D. D., Cvjeticanin, and the Concept of Lifelong Learning. Australian Journal of Adult Learning, 53(1), 151-170.
- Miller, T. M. (2017). Measurement, Theory, and Current Issues in Metacognition: An Overview. In Metacognition in Chemistry Education: Connecting Research and Practice (pp. 1-15). American Pedone, F. (2014). How to Improve Metacognition in Chemical Society.
- Millis, B. J. (2016). Using Metacognition to Promote Learning. IDEA Paper. 63(December), 1–9. Retrieved from http://www.ideaedu.org/Portals/0/Uploads/Documents/IDEA Papers/ IDEA Papers/PaperIDEA 63.pdf
- Moos, D. C., & Ringdal, A. (2012). Self-Regulated Learning in the Classroom: A Literature Review on the Teacher's Role. Education Research International, 2012, 1-15.
- Mozafari, M., Safari, Y., Abasifard, Z., Safari, M., & Sharafi, K. (2016). Assessing Dimension of Metacognitive Skills and Its Relationship with Academic Achievement in High School Students. Acta Medica Mediterranea, 32(Specia), 899-903.
- Muna, K., Sanjaya, R. E., Syahmani, & Bakti, I. (2017, December). Metacognitive Skills and Students' Problem Solving Ability: A Correlational Study on Students of XI IPA SMAN 2 Banjarmasin. In AIP Conference Proceedings (Vol. 1911, No. 1, p. 020008). AIP Publishing.
- Musliah, Purwanti, & Yuline. (2015). Analisis Keterampilan Komunikasi Siswa dengan Teman Sebaya di Sekolah Menengah Atas. Jurnal Pendidikan dan Pembelajaran, 4(12), 1-13.
- Nunaki, J. H., Damopolii, I., Kandowangko, N. Y., & Nusantari, E. (2019). The Effectiveness of Inquiry-Based Learning to Train the Students' Metacognitive Skills Based on Gender Differences. International Journal of Instruction, 12(2), 505-516.
- Nurajizah, U., Windyariani, S., & Setiono, S. (2018). Improving Students' Metacognitive Awareness

through Implementing Learning Journal. Jurnal Pendidikan Biologi Indonesia, 4(2), 105–112.

- Oguz, A., & Ataseven, N. (2016). The Relationship between Metacognitive Skills and Motivation of University Students. Educational Process: International Journal, 5(1), 54-64.
- in Developing Critical Thinking. Metacognition Palennari, M., Taiyeb, M., & Saenab, S. (2018, June). Profile of Students' Metacognitive Skill Based on Their Learning Style. In Journal of Physics: Conference Series (Vol. 1028, No. 1, p. 012030). IOP Publishing.
 - Thomas, T. (2016). Metacognitive awareness-Evaluation and Implications in Medical Students. International Journal of Research in Medical Sciences, 4(8), 3570-3575.
 - Patterson, J. (2011). Metacognitive Skills. In Encyclopedia of Clinical Neuropsychology (Vol. 28, pp. 1583-1584). New York, NY: Springer New York
 - S., & Bogdanovic, I. (2016). Fostering Pimary School Students' Metacognition Using Project-Based Learning. In The Eurasia Proceedings of Educational & Social Sciences (Vol. 4, pp. 123-126).
 - Primary School. In 8th International Technology, Education and Development Conference (pp. 1688-1698). IATED-International Academy of Technology, Education and Development.
 - Perry, J., Lundie, D., & Golder, G. (2019). Metacognition in Schools: What Does the Literature Suggest about the Effectiveness of Teaching Metacognition in Schools?. Educational Review, 71(4), 483-500.
 - Peteranetz, M. S. (2016). Fostering Metacognition in K-12 Classrooms: Recommendations for Practice. The Nebraska Educator: A Student-Led Journal, 3(2016), 64-86.
 - Rahman, S., Yasin, R. M., Ariffin, S. R., Hayati, N., & Yusoff, S. (2010). Metacognitive Skills and the Development of Metacognition in the Classroom. In International Conference on Education and Educational Technologies (pp. 347-351).
- Motivation toward Chemical Equilibrium Ramdiah, S., Abidinsyah, A., Royani, M., & Husamah, H. (2019). Understanding, Planning, and Implementation of HOTS by Senior High School Biology Teachers in Banjarmasin-Indonesia. International Journal of Instruction, 12(1), 425-440.
 - Sagitova, R. (2014). Students' Self-Education: Learning to Learn across the Lifespan. Procedia - Social and Behavioral Sciences, 152(843), 272–277.
 - Scharff, L., Draeger, J., Verpoorten, D., Devlin, M., Dvorakova, L. S., Lodge, J. M., & Smith, S. (2017). Exploring Metacognition as Support for Learning Transfer. Teaching & Learning Inquiry, 5(1), 1-8.
 - Schraw, G., & Dennison, R. S. (1994). Assessing Metacognitive Awareness. Contemporary Educational Psychology, 19(4), 460-475.

- Siagian, M. V., Saragih, S., & Sinaga, B. (2019). Development of Learning Materials Oriented on Problem-Based Learning Model to Improve Students' Mathematical Problem Solving Ability and Metacognition Ability. International Electronic Journal of Mathematics Education, 14(2), 331-340.
- Siegesmund, A. (2017). Using Self-Assessment to Develop Metacognition and Self-Regulated Learners. FEMS Microbiology Letters, 364(11), 1-4.
- Siswati, B. H., & Corebima, A. D. (2017a, June). Study on the Correlation between Metacognitive Skills and Concept Gaining of Biology at Several Learning Models. In Asia-Pacific Forum on Science Learning & Teaching (Vol. 18, No. 1.
- Siswati, B. H., & Corebima, A. D. (2017b). The Correlation Between Metacognitive Skills and Cognitive Learning Results with the Characters of Biology Students of Senior High Schools in Malang, Indonesia. Scholars Journal of Arts, Humanities and Social Sciences, 5(3), 185-190.
- Siswati, B. H., & Corebima, A. D. (2017c). The Effect of Education Level and Gender on Students' Metacognitive Skills in Malang, Indonesia. Advances in Social Sciences Research Journal, 4(4), 163-168.
- Sumampouw, H., Rengkuan, M., Siswati, B. H., & Corebima, A. D. (2016). Metacognition Skill Development in Genetic Lecture at the State University of Malang Indonesia. International Journal of Educational Policy Research and Review, 3(3), 36–42.
- Susilo, J., Kartono, & Mastur, Z. (2019). Analysis Metacognition and Communication Mathematics in Blended Learning Use Google Classroom. Unnes Journal of Mathematics Education Research, 8(1), 72-83.
- Thomas, G. P. (2012). Metacognition in Science Education: Past, Present and Future Considerations. In Second international handbook of science education (pp. 131-144). Springer, Dordrecht.

- Tjalla, A., & Putriyani, M. F. (2018). Mathematics Metacognitive Skills of Papua's Students in Solving Mathematics Problems. Asian Social Science, 14(7), 14-25.
- Wangsa, P. G., Suyana, I., Amalia, L., & Setiawan, A. (2017). Upaya Meningkatkan Kemampuan Komunikasi dan Pemahaman Konsep Siswa melalui Pembelajaran Inkuiri Berbantu Teknik TSTS (Pada Materi Gerak Lurus di SMAN 6 Bandung). Jurnal Wahana Pendidikan Fisika, 2(2), 27-31.
- Watanabe, T. (2018) Japanese Lesson Study in the United States. Educational Designer, 3(11), 1-13.
- Wilson, N. S., & Bai, H. (2010). The Relationships and Impact of Teachers' Metacognitive Knowledge and Pedagogical Understandings of Metacognition. Metacognition and Learning, 5(3), 269-288.
- Winarti, C., Sunarno, W., & Istiyono, E. (2015). Analysis of Higher Order Thinking Skills Content of Physics Examinations in Madrasah Aliyah. In International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015) (Vol. 2015. pp. 65–69). Retrieved from http://icmseunnes. com/2015/wp-content/uploads/2016/03/82 PE.pdf
- Yanti, H., Distrik, I. W., & Khasyyatillah, I. (2017). Profile of Senior High School Metacognitive Ability in Solving Problems of Abstraction on Physics Material. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(2), 241-246.
- Zulfiani, Z., Herlanti, Y., Rosydatun, E. S., Hasiani, S., Rohmatulloh, G., & Zugistya, N. (2018). Developing Metacognitive Skill Instrument on Fungus Concept. EDUSAINS, 10(2), 243-253.
- Zulfikar, T. (2013). Looking from within: Prospects and Challenges for Progressive Education in Indonesia. International Journal of Progressive Education, 9(3), 124-136.