THE EFFECT OF MULTIMEDIA-BASED TEACHING MATERIALS IN SCIENCE TOWARD STUDENTS’ COGNITIVE IMPROVEMENT

Khoiriah¹, Tri Jalmo², Abdurrahman²

¹SMP Negeri 16 Bandar Lampung, Indonesia
²Prodi Pendidikan Fisika, FKIP, Unila Bandar Lampung, Indonesia

DOI: 10.15294/jpii.v5i1.5793

Accepted: 18 January 2016. Approved: 27 March 2016. Published: April 2016

ABSTRACT

This study is a meta-analysis study that aimed to determine the effect of multimedia-based teaching materials in science learning to students' cognitive enhancement. This study integrated primary study results of several studies that had been published in national and international journals. The method used in this research was the analysis of the results of seven international journals and three national journals involving multimedia teaching materials based on science learning as the main study. Searches were done through the search engine Google, using Eric Journal and Google scholar with keyword multimedia-based teaching materials. Analysis of data was the description of the results of the average effect size of each study sampled then categorized based on Cohen's interpretation. The results showed that multimedia-based teaching materials in science learning had a significant influence on students' cognitive learning outcomes indicated by the average effect size of 0.78. Differences in cognitive enhancement were based on a group of countries, fields of study, education level and the variety of multimedia teaching materials. It was concluded that the multimedia-based teaching materials in science learning showed a significant effect on students' cognitive enhancement.

© 2016 Science Education Study Program FMIPA UNNES Semarang

Keywords: meta-analysis, multimedia teaching materials, students' cognitive.

INTRODUCTION

Natural Science is a vehicle for students to learn about objects and natural phenomena based on the thoughts, observations and investigations (Ministry of Education and Culture, 2014). Science does not only cover scientific knowledge, but also contains important scientific dimensions that includes content dimension in the form of facts, concepts, laws and theories, and the dimensions of the scientific process (Liliasari & Tawil, 2014).

Science is a knowledge to develop scientific understanding through research activities, so that students are able to explain, evaluate and build scientific knowledge independently (Duschl, et al., 2007).

The quality of science teaching in some countries, at the moment is still relatively low. This is reflected in the results of the analysis of the ability of students' science achievement in several international studies such as TIMSS (Trends in International Mathematics and Science Study) and PISA (Programme for International Students Assessment). Based on the TIMSS science achievement data mapping in 2011, there were 24 of the 42 participating countries are in a position below the international average score scoring less than 500 (IEA, 2012). Furthermore, based on the results of PISA in 2012 there were 40 of the 65 participating countries also had an average science achievement scores below the international average score under 501 (OECD, 2013).

The low achievement in science in some countries is partly due to the less maximal of students’ cognitive abilities development. Cognitive ability is not a natural skill but a process and a product of mind to attain knowledge in the form of
mental activities like remembering, symbolizing, categorizing and solving problems (Hamalik, 2011). Cognitive Domain in Bloom’s Taxonomy mentions six kinds of capabilities that are arranged in a hierarchy ranging from the simplest to the complex, they are: knowledge, comprehension, application, analysis, synthesis and evaluation (Vieyra, 2006). One cause of low cognitive abilities of students is the teaching materials used in teaching (Djamakah & Zain, 2014). Many teaching materials only copy information from one to others, so that students have a tendency to memorize. Teachers need appropriate media to attract students’ attention during learning, processing complicated and complex teaching materials into simple and clear ones, and reverting abstract scientific concepts into the concrete ones (Ministry of National Education, 2007). Concrete concepts in learning become fundamental to clarify the abstract facts (Hill & Korhonen, 2014). Attractive teaching materials are potential to increase the students' cognitive processes (Koning, et al., 2009). The effectiveness and efficiency of the learning process can be improved through the application of multimedia teaching materials (Siagian, et al., 2014).

Multimedia includes various combinations of text, images, graphics, animation and video elements that have been digitally manipulated so as to display a fun projection, having aesthetic value and maintaining visual consistency (Ivers & Baron, 2010). Students receive multimedia-based learning information through both spoken and text as well as information through images such as animations or illustrations (Mayer, 2003). Application of multimedia learning can increase high-level thinking skill, problem solving skill and students’ cognitive (Stoney & Oliver, 1999). Multimedia greatly contributes to the effectiveness of learning as well as the delivery of messages and content, thus helping students to enhance their understanding and ability to think (Fitriana, 2011).

Research on multimedia learning has been widely carried out, thus requiring a comprehensive assessment. This study aimed to determine the effect of multimedia-based teaching materials in science learning toward students’ cognitive improvement. It was conducted through several discussions in general, regional countries, subjects, education levels and learning media.

METHOD

The method in this study was a meta-analysis by reviewing the results of several educational journals (Merriyana, 2006). The collection of data obtained from 10 journals on education includes seven international journals and three national journals, while the journals were searched through google search engines included Eric Journal and Google Scholar with the main study of multimedia-based teaching materials.

Analysis of the data used a description of the average effect size of each study. The applied formula of effect size was Delta Glass (Glass, 1976). The effect sizes results was then categorized based on Cohen’s interpretation as follows:

<table>
<thead>
<tr>
<th>Category of Effect Size</th>
<th>Cohen’s Standard Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>0.6 – 2.0</td>
</tr>
<tr>
<td>Medium</td>
<td>0.3 – 0.5</td>
</tr>
<tr>
<td>Small</td>
<td>0.0 – 0.2</td>
</tr>
</tbody>
</table>

Cohen (1988)

RESULT AND DISCUSSION

The discussion in this research comprehensively covers general study, regional countries, science disciplines, education levels and learning media.

Based on data from Table 2, it showed that the average effect size was 0.78. This shows that the multimedia-based teaching materials in science learning can improve cognitive achievement of students with the category of “high” (Cohen, 1988). Learning by using multimedia-based teaching materials make it easier for students to understand the concept (Zahra, 2015). Students can learn the abstract concepts using multimedia-based teaching materials so as to clarify those (Ministry of National Education, 2007). Multimedia-based teaching materials can improve the construction of knowledge, synthesis skill as well as build bridges between knowledge (Schrader & Raff, 2015). Abstract concepts in physics will be more easily understood when students acquire multimedia learning (Liu 2006 & Wiyono, 2009).

The results of analysis of multimedia teaching materials presented through a variety of ways, including text, graphics, images, audio, video and animation (Table 2). Students will learn more effectively when learning information is processed through various means (Rahman, 2011). The concept of liver function is easier to understand when students use multimedia graphics, while the blood circulation system is presented in text, video and animation (Brunken et al., 2003). Presentation of learning informati-
on through text, graphics, images, audio, video and animation also relates to the use of the five senses. Students’ understanding will be better if the lesson presented by integrating the senses of sight and hearing compared by only using the sense of sight (Mayer, 2001).

Results of research by Haryanto (2015) involved students of junior high school with special needs as a sample. This research has the highest effect size (1.19) compared to other research (Table 2). Characteristics of his study sample are below normal students with the Intelligence Quotient (IQ) of less than 79 (Somantri, 2006). Teaching materials in Haryanto’s research (2015) were presented through video animation on the concept of the body frame and the human senses. The results showed that an animated video teaching material can improve cognitive learning outcomes of students. Animated video teaching materials are more capable to stimulate thoughts, feelings, concerns and learning willingness of students (Ministry of National Education, 2007).

Multimedia teaching material can input and exchange various types of information and knowledge into students’ minds more widely (Jalali, et al., 2015). Learning effectiveness can be maximized through multimedia learning (Najjar, 1998). The results of data analysis also showed the influence of multimedia teaching materials to students’ cognitive improvement in several count-

<table>
<thead>
<tr>
<th>No.</th>
<th>Researcher</th>
<th>Country</th>
<th>Subjects</th>
<th>Level</th>
<th>Experiment</th>
<th>Control</th>
<th>Discussion</th>
<th>Total Respondents</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Li Zhu and Barbara Grabowski</td>
<td>Pennsylvania</td>
<td>Biology</td>
<td>Senior High School</td>
<td>Animation & Elaboration Strategy</td>
<td>Graphic Pictures</td>
<td>Concept Understanding</td>
<td>115</td>
<td>0.30</td>
</tr>
<tr>
<td>2.</td>
<td>Bradley D. Ausman, Huijen Lin, dan Kusri Kudai</td>
<td>Pennsylvania</td>
<td>Biology</td>
<td>University</td>
<td>Progressive Animation</td>
<td>Animation</td>
<td>Concept Understanding</td>
<td>88</td>
<td>0.80</td>
</tr>
<tr>
<td>3.</td>
<td>Carol Koroghnian dan James D. Klein</td>
<td>Arizona</td>
<td>Biology</td>
<td>Senior High School</td>
<td>Audio – Animation</td>
<td>Audio Text</td>
<td>Concept Understanding</td>
<td>109</td>
<td>0.5</td>
</tr>
<tr>
<td>4.</td>
<td>Wira Udaibah</td>
<td>Indonesia</td>
<td>Chemistry</td>
<td>University</td>
<td>Animation – Power Point</td>
<td>Conventional</td>
<td>Achievement and Learning Motivation</td>
<td>40</td>
<td>0.92</td>
</tr>
<tr>
<td>5.</td>
<td>Gokhan Aksoy</td>
<td>Turkey</td>
<td>Physics</td>
<td>Elementary School</td>
<td>Computer Animation</td>
<td>Traditional</td>
<td>Learning Outcomes</td>
<td>60</td>
<td>1.00</td>
</tr>
<tr>
<td>6.</td>
<td>Slamet Rasya, Wardi dan Sucipto</td>
<td>Indonesia</td>
<td>Biology</td>
<td>Junior High School</td>
<td>Flash Animation</td>
<td>Power Point</td>
<td>Learning Outcomes</td>
<td>64</td>
<td>0.65</td>
</tr>
<tr>
<td>7.</td>
<td>Ananta Kumar Jena</td>
<td>India</td>
<td>Biology</td>
<td>Elementary School</td>
<td>Computer Animation</td>
<td>Traditional Teaching</td>
<td>Learning Outcomes</td>
<td>52</td>
<td>0.84</td>
</tr>
<tr>
<td>8.</td>
<td>Agnaldo Pedra, Richard E. Mayer dan Alberto Luiz Albertin</td>
<td>Brazil</td>
<td>Physics</td>
<td>University</td>
<td>Interactive Technic Animation</td>
<td>Non-Interactive</td>
<td>Learning Outcomes</td>
<td>68</td>
<td>1.06</td>
</tr>
<tr>
<td>9.</td>
<td>Hsin I.Yung dan Fred Pass</td>
<td>Taiwan</td>
<td>Biology</td>
<td>Junior High School</td>
<td>Pedagogic Animation</td>
<td>Non-Pedagogic Animation</td>
<td>Cognitive Mastery</td>
<td>133</td>
<td>0.53</td>
</tr>
<tr>
<td>10.</td>
<td>I Nyoman Haryanto</td>
<td>Indonesia</td>
<td>Biology</td>
<td>Special Needs Junior High School</td>
<td>Animation Video</td>
<td>Traditional</td>
<td>Learning Outcomes and Creativity</td>
<td>20</td>
<td>1.19</td>
</tr>
</tbody>
</table>

| Mean | 0.78 |
ries including Indonesia, USA, Turkey, India and Taiwan.

The average effect size of influence of multimedia teaching materials toward students’ cognitive enhancement in Indonesia and Turkey were higher than the US, India and Taiwan (Figure 1). This was due to the control class research in Indonesia and Turkey used different teaching materials from the experimental class. Control classes were not given multimedia-based teaching materials so that it gives a very significant effect on students’ cognitive enhancement. Multimedia developments in Indonesia started since the erection of Satelindo in 1993. This progress was marked with the publication of 2210 of multimedia-based educational journals. Meanwhile, based on the results of the data mapping by PISA in 2012, Turkey ranked 44th out of 65 participating countries (OECD, 2013). This fact had pushed the Turkish government to reform the education (Gencer & Cakiroglu, 2005; Dogan & El Khalick, 2008 and Cikmaz, 2014).

Based on the facts, it was concluded that the multimedia development in Indonesia and Turkey used new technology. Through new learning climate, Indonesia and Turkey are capable of increasing students’ interest and motivation, thus providing a positive influence on the learning outcome (Djamarah & Zain, 2014). Motivation is the driving engine that can accelerate the success of the learning process (Hamalik, 2011). Learning interest is able to encourage the emergence of student motivation to learn. Motivation affects the process of interaction between students and learning materials (Sardiman, 2014). Students’ progress in learning motivation is an important element that involves mental and physical activity (Johnsto, 2013 & Naor, et al., 2014).

The results of data analysis also showed the influence of multimedia-based teaching materials to students’ cognitive enhancement in various disciplines of science: physics, chemistry and biology (Figure 2).

Based on Figure 2, it was discovered that the means of effect size of influence of multimedia teaching materials toward physics, chemistry and biology belongs to the “high” category (Cohen, 1988). Physics materials in these studies were the solar system and engineering, the chemistry material was metal structures and the biology materials included parts and functions of...
the human heart, the circulatory system, the cycle of blood pressure, cell system, digestive system, the body frame and the five senses as well as the human cardiovascular system. Based on above data, it showed that the subject matter of physics, chemistry and biology were mostly abstract concepts. Learning to use the abstract concepts in general the students could only imagine the existence of the matter. Most of students are not able to construct knowledge and understand the material independently so they fail to learn (Hill & Korhonen, 2014). Students’ understanding of abstract concepts can be found out through the provision of open-ended questions (Wang, et al., 2012). Teachers play an active role as a facilitator to facilitate students to learn and develop the knowledge (Mahfouz, 2012). Teachers can process abstract concepts through multimedia-based teaching materials into a concrete concept (Ministry of National Education, 2007). Abstract concepts in biology materials will be more easily understood when students use multimedia learning (Pratiwi, 2011).

Various concepts, principles and theories of science are essentially a product obtained through systematic and planned process (Curriculum and Book Research and Development Center, 2014). The concepts of science in general are interconnected; so as to understand a concept, the students first should understand the previous concept. Multimedia teaching materials can help students in describing relationships between concepts and the process of science (Ministry of National Education, 2007).

Based on Figure 3, the effects of multimedia teaching materials in elementary education level students gained an average of 0.92 effect size category “high” (Cohen, 1988). This showed that the multimedia-based teaching materials have a very significant effect on cognitive enhancement of elementary students.

Based on Piaget’s Theory of Cognitive Development, students aged 7 to 12 years old are at the stage of concrete operations, so that the students are able to solve the problem logically with the help of concrete concepts and objects (Huitt & Hummel, 2003).

Learning must be tailored to the students’ level of cognitive development, for example in the stage of concrete operations the students should learn with the materials that constitute live experience as well as the problems and concrete objects (Sungur et al., 2001). Internal mental activity during the learning has enabled students to modify and organize images and symbols in order to reach logical conclusion (Shaffer & Kipp, 2010).

Figure 3 also showed the multimedia teaching materials on the SMP had “high” category by effect size of 0.79 (Cohen, 1988). Junior high school students (12 to 15 years old) are at the stage of cognitive development of concrete operations towards formal operations (Huitt & Hummel, 2003). Learning using multimedia-based teaching materials can develop their intellectual ability to think on concrete objects (Ministry of National Education, 2007). Effect size for junior high school students was smaller than those for elementary school students (Figure 3). There are still many 12 years old students and older who have not yet reached the stage of formal opera-
tions, this happens because of the level of intellectual development is not only determined by the age factor alone but also influenced by maturity, physical experience, math-logic experience, social transmission and the process of balance or self-regulation (Dahar, 1996).

The average of effect size of multimedia teaching materials at high school students was 0.40 (Figure 3). The data was categorized as “moderate”. This meant that multimedia teaching materials do not significantly influence the cognitive development of high school students. High school students (15 to 18 years old) are at the mid-teens stage, which is a transition stage between early adolescents aged 12 to 15 years and the late teen aged 18 to 21 years (Yusuf, 2008).

Based on Piaget’s Theory of Cognitive Development, senior high school students are at the stage of formal operations. In this stage, students are able to think logically for different types of hypotheses, verbal problems, deductive and inductive thinking and the use of scientific reasoning and they are also capable to accept the views of others (Huitt & Hummel, 2003). High school students do not only have the ability to think on a concrete concept, but they can also develop the ability to think in abstract concepts (Krause, et al., 2007 & Sungur, et al., 2001). High school students in general have a higher intellectual development than junior high school students, so they should have a better mastery of concepts. But the results of data analysis showed that the average effect size of high school students is lower than junior high school students (Figure 3). High school students have the cognitive abilities that are well developed to be able to cope with stress or emotional fluctuation effectively. But in reality there are many high school students who have not been able to manage their emotions, depressed, grumpy and less capable to regulate themselves. These conditions lead to various problems, including learning difficulties that affect the improvement of students’ cognitive abilities (Yusuf, 2008).

Based on the analysis, the researcher concludes that:

CONCLUSION

a. Multimedia teaching materials emerged a very significant influence on students’ cognitive development level of formal operations is significantly better than students at the level of concrete operations (Okoye, et al., 2008).

The average effect size data showed that university level has the highest score. It is not only related to age alone but it is also determined by the intellectual development, a way of thinking based on the awareness and skill to test hypotheses and scientific reasoning (Yusuf, 2008).

In general the media in this study belonged to the audiovisual motion media or animation (Figure 4). Audiovisual media can show an element of sound (audio) and moving images (visual) (Djamarah & Zain, 2014). Multimedia program includes several important elements include text, images, video, animation, sound, interactive and user controls (Ivers & Baron, 2010).

Multimedia type in this study was interactive multimedia (picture 4). Interactive multimedia was equipped with a controller operated by a computer user to select the desired effect to continue the process of the next program.

The results of data analysis showed that the average effect size interactive animations media created by students was higher than other media, with a score of 0.88 (figure 4). This shows that interactive animation media made by the students has significant effect on students’ cognitive improvement compared to other media. Interactive multimedia can increase effectiveness and efficiency of learning (Siagian, et al., 2014). It can also illustrates various concepts to achieve specific learning objectives (Ferguson et al., 2015).

Learning activities of students through interactive multimedia activities is not just a viewing activity, but also a variety of other activities such as listening, observing and discussing, so that the students’ knowledge increased significantly (Ministry of National Education, 2007). The data even showed that interactive media created by the students would have a higher effect size than the ones created by the teacher. The best way to study is through speaking activity which contributes to 90% in terms of the understanding, while the activity of talking accounts for 70%, seeing and hearing contribute 50%, the viewing activity helps 30%, hearing gives 20% while reading adds only 10% of the student’s total understanding (Magnesen, 1983).

Based on the analysis, the researcher concludes that:

80
improvement with the effect size of 0.78.

b. Multimedia teaching materials caused a very significant influence in Indonesia and Turkey with the effect size of 1.00 and 0.92.

c. Multimedia teaching materials gave the most significant effect on the subjects of physics with the effect size of 1.03.

d. Multimedia teaching materials brought a very significant influence on the university level, with the effect size of 0.93.

e. Interactive media created by students played more significant effect on students’ cognitive improvement with the effect size of 0.88.

REFERENCES

Doganc, Nihal & El Khalick, Abd Foud. (2008). Turkish Grade 10 Student’s and Science Teacher’s Conceptions of Nature of Science : A National Study. Turkey : Department of Science Education. Abant Izzet Baysal University.

Ivers, K & Baron, A. 2010. Multimedia Project in Educa\-tion. USA.

Liliasari & Tawil, Muh. (2014). Keterampilan-Keter\-ampilan Sains dan Implementasinya dalam Pembelajaran IPA. Indonesia: Universitas Negeri

