APLIKASI JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK MEMPREDIKSI PENYAKIT THT DI RUMAH SAKIT MARDI RAHAYU KUDUS

Arif Jumarwanto, Rudi Hartanto, Dhihik Prastiyanto

Abstract


Artificial neural network (ANN) is a modern computing paradigm. That can be used for the pattern recognition and other. Backpropagation is artificial neural network which using hidden layer addition. Computation of artificial neural network through some certain step like training phase and examination. After both the step reached, so a neural network capable to recognize pattern to be entered will be found.
The purpose of this research is simulation of artificial neural network that capable to pattern recognition from output of electrocardiogram by helped of MATLAB program. Input of result electrocardiogram record, then input of data can be normalization after that data can be proccesed by backpropagation computing with two step (training phase and examination phase). Output of ANN is like explaning condition of patient is normal, rhinitis kronis or epistaksis.

Keyword : rhinitis kronis, epistaksis, artificial neural network.


Full Text:

PDF

References


Aston, Richard. 1991. Principles Of Biomedical Instrumentation And Measurement. Maxwell Macmillan International Editions

Hermawan, Arief. 2006. Jaringan Saraf Tiruan Teori dan Aplikasi. Yogyakarta: ANDI OFFSET.

Kusumadewi. Sri 2003. Artificial Intelligence Teknik dan Aplikasi. Yogyakarta: Graha Ilmu.

Puspitaningrum, Diyah. 2006. Pengantar Jaringan Saraf Tiruan. Yogyakarta: ANDI OFFSET.

Setiawan, Sandi. 1993. Artificial Intelligence. Yogyakarta: ANDI OFFSET.

Siang.JJ 2005. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: ANDI.

www.elekroindonesia.com/jst diupload tanggal 28 Agustus 2007 pukul 14.40 WIB

http://telkomnika.elektrouad.net/?Volume_2%2C_No_2:Desain_Dan_Penggunaan_%22E2glite_Expert_System_Shell%22_Untuk_Diagnosis_Penyakit_THT diupload tanggal 28 Agustus 2007 pukul 14.23 WIB


Refbacks

  • There are currently no refbacks.