Optimal Reactive Power Dispatch untuk Meminimalkan Rugi Daya Menggunakan Flower Pollination Algorithm

Fredi Prima Sakti(1), Jimmy Trio Putra(2),


(1) Universitas Teknologi Yogyakarta
(2) Universitas Gadjah Mada

Abstract

This paper presents the Flower Pollination Algorithm (FPA) metaheuristic used to solve the Optimal Reactive Power Dispatch (ORPD) problem. ORPD is a non-linear optimization problem in the electric power system that regulates the generation of reactive power at the generator to minimize the real power loss on the transmission line while maintaining all parameters at the allowable value. In this case the FPA algorithm is used to find the minimum power loss by adjusting the voltage magnitude value of the generator, the transformer tap settings, and the reactive power compensator value in the system while maintaining the magnitude of the bus voltage, active and reactive power at the generator, and the channel capacity remains at its safe limit. ORPD is applied to the IEEE-30 Bus system test consisting of 8 generating units, 4 transformers, 9 reactive power compensators and 41 channels. The system has a load of 283.4 MW and 126.2 MVAR. The results after being optimized using FPA shows the power loss in the channel is reduced to 4,895 MW or reduced by 15.89%. The results of optimization using FPA showed better results compared to Genetic Algorithm and Particle Swarm Optimization.

Keywords

Optimal Reactive Power Dispatch; power loss; voltage magnitude; Flower Pollination Algorithm

Full Text:

PDF

References

G. B. Allen J. Wood, Bruce F. Wollenberg, Power Generation, Operation, and Control, Third edit. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.

W. G. on L. R. CIRED, “Reduction of Technical and Non-Technical Losses in Distribution Networks,†Int. Conf. Electr. Distrib., p. 114, 2017.

M. A. Abido, “Multiobjective Optimal VAR Dispatch using strength Pareto Evolutionary Algorithm,†Evol. Comput. 2006. CEC 2006. IEEE Congr., pp. 730–736, 2006.

M. Ghasemi, S. Ghavidel, M. M. Ghanbarian, and A. Habibi, “A New Hybrid Algorithm for Optimal Reactive Power Dispatch Problem with discrete and Continuous Control Variables,†Appl. Soft Comput. J., vol. 22, pp. 126–140, 2014.

G. Chen, L. Liu, Z. Zhang, and S. Huang, “Optimal reactive Power Dispatch by Improved GSA-based Algorithm with the Novel Strategies to Handle Constraints,†Appl. Soft Comput. J., vol. 50, pp. 58–70, 2017.

S. Duman, Y. Sönmez, U. Güvenç, and N. Yörükeren, “Optimal Reactive Power Dispatch using a gravitational Search Algorithm,†IET Gener. Transm. Distrib., vol. 6, no. 6, pp. 563–576, 2012.

A. H. Khazali and M. Kalantar, “Optimal Reactive Power Dispatch based on Harmony Search Algorithm,†Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 684–692, 2011.

X.-S. Yang, “Flower Pollination Algorithm for Global Optimization,†Unconv. Comput. Nat. Comput. 2012, Lect. Notes Comput. Sci., vol. 7445, pp. 240–249, 2012.

B. Mahdad and K. Srairi, “Security constrained Optimal Power Flow Solution using New Adaptive Partitioning Flower Pollination Algorithm,†Appl. Soft Comput., vol. 46, pp. 501–522, 2016.

B. S. Kumar, M. Suryakalavathi, and G. V. N. Kumar, “Optimal Power Flow with Static VAR Compensator based on Flower Pollination Algorithm to Minimize Real Power Losses,†Conf. Power, Control. Commun. Comput. Technol. Sustain. Growth, PCCCTSG 2015, no. 2, pp. 112–116, 2016.

S. Vijayaraj and R. K. Santhi, “Multi-area Economic Dispatch using Flower Pollination Algorithm,†Electr. Electron. Optim. Tech. (ICEEOT), Int. Conf., pp. 4355–4360, 2016.

E. S. Oda, A. A. Abdelsalam, M. N. Abdel-Wahab, and M. M. El-Saadawi, “Distributed Generations Planning using Flower Pollination Algorithm for Enhancing Distribution System Voltage Stability,†Ain Shams Eng. J., vol. 8, no. 4, pp. 593–603, 2017.

A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Implementation of Flower Pollination Algorithm for Solving Economic Load Dispatch and Combined Economic Emission Dispatch Problems in Power Systems,†Energy, vol. 101, pp. 506–518, 2016.

O. Alsac and B. Stott, “Optimal Load Flow with Steady-State Security,†IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 3, pp. 745–751, 1974.

A. A. Abou El Ela, M. A. Abido, and S. R. Spea, “Optimal Power Flow using Differential Evolution Algorithm,†Electr. Power Syst. Res., vol. 80, no. 7, pp. 878–885, 2010.

K. Y. Lee, Y. M. Park, and J. L. Ortiz, “A United Approach to Optimal Real and Reactive Power Dispatch,†IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 5, pp. 1147–1153, 1985.

M. A. Abido, “Optimal Power Flow using Particle Swarm Optimization,†Int. J. Electr. Power Energy Syst., vol. 24, no. 7, pp. 563–571, 2002.

S. Surender Reddy and C. Srinivasa Rathnam, “Optimal Power Flow using Glowworm Swarm Optimization,†Int. J. Electr. Power Energy Syst., vol. 80, pp. 128–139, 2016.

I. Oumarou, P. D. Jiang, and P. C. Yijia, “Particle Swarm Optimization Applied to Optimal Power Flow Solution,†no. 2, 2009.

A.-A. A. Mohamed, Y. S. Mohamed, A. A. M. El-Gaafary, and A. M. Hemeida, “Optimal Power Flow using Moth Swarm Algorithm,†Electr. Power Syst. Res., vol. 142, pp. 190–206, 2017.

A. Rajan and T. Malakar, “Exchange Market Algorithm based Optimum Reactive Power Dispatch,†Appl. Soft Comput. J., vol. 43, pp. 320–336, 2016.

B. Shaw, V. Mukherjee, and S. P. Ghoshal, “Solution of Reactive Power Dispatch of Power Systems by an Opposition-based Gravitational Search Algorithm,†Int. J. Electr. Power Energy Syst., vol. 55, pp. 29–40, 2014.

Refbacks

  • There are currently no refbacks.