Optimalisasi Pengereman Regeneratif dengan Perubahan Sudut Eksitasi pada Pulsa Tunggal

Nazila Kusumaningrum(1), Slamet Riyadi(2), Leonardus Heru Pratomo(3), Florentinus Budi Setyawan(4),

(1) Universitas Katolik Soegijapranata
(2) Universitas Katolik Soegijapranata
(3) Universitas Katolik Soegijapranata
(4) Universitas Katolik Soegijapranata


Most of the energy is wasted into heat energy due to conventional braking, so an optimal braking strategy is needed. A Regenerative braking utilizes the kinetic energy of the engine into electrical energy by changing the function of an electric machine into a generator. The regenerative braking system uses a Switched Reluctance Machine (SRM) which has several advantages; simple construction, does not require maintenance, and return energy to the battery. The method that can be used in the regenerative braking system of the SRM is the change of excitation angle to produce the maximum peak phase current. This study aims to optimize regenerative braking by changing the angle (θeks) using simple controls to produce energy that is greater than the battery voltage so that current may flow to the battery when braking occurs. The results of the analysis for method implementation were proven by testing the devices in the laboratory.  Based on the results of the tests, the exact angle was obtained, namely the value of θeks = 20º and the value of θkom = 170º with an initial speed of 1822 RPM, reduced into 1522 RPM by braking process, which could produce a peak current of 12,5 A and a current flowing to the battery was 5A.


back-emf; regenerative braking; SRM; excitation angle; comutation angle

Full Text:



A. Eldho Aliasand and F. T. Josh, “Selection of Motor foran Electric Vehicle: A Review,†Mater. Today Proc., vol. 24, pp. 1804–1815, 2020, doi: 10.1016/j.matpr.2020.03.605.

J. Riset, A. W. Aditya, R. M. Utomo, J. Soekarno, and H. Km, “Evaluasi Motor Listrik Sebagai Penggerak Mobil Listrik Evaluation of Electric Motor as The Main Actuator of Electric Vehicle,†2019, vol. 3, no. 2, pp. 55–59, doi: 10.30595/jrst.v3i2.4142.

M. Korkosz and A. Powrózek, “The influence of control parameters on energy efficiency of switched reluctance generator for vehicle applications,†E3S Web Conf., vol. 14, p. 01037, Mar. 2017, doi: 10.1051/e3sconf/20171401037.

R. Munarto and B. Rinaldi, “Analisis Pengereman dinamik pada Motor Induksi 3 Fasa dengan metode Injeksi Arus Searah dan Kapasitor Eksitasi Sendiri Fuzzy C-Means Clustering,†Setrum Sist. Kendali-Tenaga-Elektronika-Telekomunikasi-Komputer, vol. 7, no. 1, p. 69, 2018, doi: 10.36055/setrum.v7i1.3462.

D. Prameswari and Y. Yohanes, “Analisa Sistem Pengereman Pada Mobil Multiguna Pedesaan,†J. Tek. ITS, vol. 8, no. 1, Jun. 2019, doi: 10.12962/j23373539.v8i1.42494.

Z. Zhang, R. Ma, L. Wang, and J. Zhang, “Novel PMSM Control for Anti-Lock Braking Considering Transmission Properties of the Electric Vehicle,†IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10378–10386, Nov. 2018, doi: 10.1109/TVT.2018.2866828.

P. H. Simbolon and A. B. Pulungan, “Implementasi Buck-Boost Converter pada Proses Pengereman Regeneratif Motor BLDC,†J. Teknol. dan Rekayasa Manufaktur, vol. 2, no. 2, pp. 19–28, Oct. 2020, doi: 10.48182/jtrm.v2i2.77.

M. D. Rivandi, “Studi Analisis Daya Hasil Proses Regeneratif Motor Elevator,†Progr. Stud. Tek. elektro ISTN, Jakarta selatan, vol. XIX, no. 1, pp. 27–32, 2017.

M. Latif, A. Valdesio, and M. Muharam, “Energi Listrik dari Pengereman Regeneratif Sepeda Motor dengan Menggunakan Dinamo Sepeda,†J. Nas. Tek. ELEKTRO, vol. 7, no. 2, p. 90, Jul. 2018, doi: 10.25077/jnte.v7n2.503.2018.

T. A. D. S. Barros, P. J. D. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An Approach for Switched Reluctance Generator in a Wind Generation System with a Wide Range of Operation Speed,†IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277–8292, 2017, doi: 10.1109/TPEL.2017.2697822.

P. J. D. S. Neto, T. A. D. S. Barros, M. V. De Paula, R. R. De Souza, and E. R. Filho, “Design of Computational Experiment for Performance Optimization of a Switched Reluctance Generator in Wind Systems,†IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406–419, 2018, doi: 10.1109/TEC.2017.2755590.

W. Uddin, T. Husain, Y. Sozer, and I. Husain, “Design Methodology of a Switched Reluctance Machine for Off-Road Vehicle Applications,†IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2138–2147, May 2016, doi: 10.1109/TIA.2015.2514283.

W. Uddin, T. Husain, Y. Sozer, and I. Husain, “Design Methodology of a Switched Reluctance Machine for Off-Road Vehicle Applications,†IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2138–2147, May 2016, doi: 10.1109/TIA.2015.2514283.

V. P. Vujicic and M. P. Calasan, “Simple Sensorless Control for High-Speed Operation of Switched Reluctance Generator,†IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1325–1335, Dec. 2016, doi: 10.1109/TEC.2016.2571841.

Y. Zhu, H. Wu, and J. Zhang, “Regenerative Braking Control Strategy for Electric Vehicles Based on Optimization of Switched Reluctance Generator Drive System,†IEEE Access, vol. 8, pp. 76671–76682, 2020, doi: 10.1109/ACCESS.2020.2990349.

S. S. Ahmad and G. Narayanan, “Modeling of Single-Pulse Operated Switched Reluctance Generator and Its Verification,†IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 4966–4976, Sep. 2020, doi: 10.1109/TIA.2020.3005586.

M. Ma, Z. Chang, Y. Hu, F. Li, C. Gan, and W. Cao, “An Integrated Switched Reluctance Motor Drive Topology with Voltage-Boosting and On-Board Charging Capabilities for Plug-In Hybrid Electric Vehicles (PHEVs),†IEEE Access, vol. 6, pp. 1550–1559, 2017, doi: 10.1109/ACCESS.2017.2779460.

A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined Active Flux and High-Frequency Injection Methods for Sensorless Direct-Flux Vector Control of Synchronous Reluctance Machines,†IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018, doi: 10.1109/TPEL.2017.2697209.

V. Wijaya and S. Riyadi, “Implementation of Input Capture Method on Switched Reluctance Motor to Obtain Precise Commutation Signals,†CENCON 2019 - 2019 IEEE Conf. Energy Convers., vol. 2019-Janua, pp. 110–114, 2019, doi: 10.1109/CENCON47160.2019.8974776.

E. Roshandel, M. M. Namazi, A. Rashidi, S. M. Saghaian-Nejad, and J. W. Ahn, “SSC strategy for SRG to achieve maximum power with minimum current ripple in battery charging,†IET Electr. Power Appl., vol. 11, no. 7, pp. 1205–1213, 2017, doi: 10.1049/iet-epa.2016.0770.


  • There are currently no refbacks.