### Design and Implementation of Z-Source Inverter by Simple Boost Control Technique for Laboratory Scale Micro-Hydro Power Plant Application

^{(1)}, Rizky Ajie Aprilianto

^{(2)}, Heri Suryoatmojo

^{(3)}, Suwito Suwito

^{(4)},

(1) Universitas Brawijaya

(2) Universitas Gadjah Mada

(3) Institut Teknologi Sepuluh Nopember

(4) Institut Teknologi Sepuluh Nopember

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006.

R. M. Ariefianto, Y. S. Hadiwidodo, and S. Rahmawati, “Modelling of Unidirectional Oscillating Buoy Wave Energy Converter Based on Direct Mechanical Drive System under Irregular Wave,” IOP Conf. Ser. Earth Environ. Sci., vol. 698, no. 1, 2021, doi: 10.1088/1755-1315/698/1/012014.

W. I. Ibrahim, M. R. Mohamed, and R. M. T. R. Ismail, “Direct Power Control Method of Maximum Power Point Tracking (MPPT) Algorithm for Pico-Hydrokinetic River Energy Conversion System,” Lect. Notes Electr. Eng., vol. 632, pp. 691–703, 2020, doi: 10.1007/978-981-15-2317-5_58.

V. K. Singh and S. K. Singal, “Operation of hydro power plants-a review,” Renew. Sustain. Energy Rev., vol. 69, pp. 610–619, 2017, doi: 10.1016/j.rser.2016.11.169.

D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006.

R. M. Ariefianto, Y. S. Hadiwidodo, and S. Rahmawati, “Modelling of Unidirectional Oscillating Buoy Wave Energy Converter Based on Direct Mechanical Drive System under Irregular Wave,” IOP Conf. Ser. Earth Environ. Sci., vol. 698, no. 1, 2021, doi: 10.1088/1755-1315/698/1/012014.

W. I. Ibrahim, M. R. Mohamed, and R. M. T. R. Ismail, “Direct Power Control Method of Maximum Power Point Tracking (MPPT) Algorithm for Pico-Hydrokinetic River Energy Conversion System,” Lect. Notes Electr. Eng., vol. 632, pp. 691–703, 2020, doi: 10.1007/978-981-15-2317-5_58.

V. K. Singh and S. K. Singal, “Operation of hydro power plants-a review,” Renew. Sustain. Energy Rev., vol. 69, pp. 610–619, 2017, doi: 10.1016/j.rser.2016.11.169.

R. A. Aprilianto, Subiyanto, and T. Sutikno, “Modified SEPIC converter performance for grid-connected PV systems under various conditions,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 6, pp. 2943–2953, 2018, doi: 10.12928/TELKOMNIKA.v16i6.10148.

M. M. Uamusse, K. Tussupova, K. M. Persson, and R. Berndtsson, “Mini-grid hydropower for rural electrification in mozambique: Meeting local needs with supply in a nexus approach,” Water (Switzerland), vol. 11, no. 2, p. 305, 2019, doi: 10.3390/w11020305.

W. Ali, H. Farooq, A. Rasool, I. A. Sajjad, C. Zhenhua, and L. Ning, “Modeling and analysis of the dynamic response of an off-grid synchronous generator driven micro hydro power system,” Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 373–384, 2021, doi: 10.14710/ijred.2021.33567.

R. Sebastian C and P. P. Rajeevan, “A load commutated multilevel current source inverter fed open-end winding induction motor drive with regeneration capability,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 816–825, 2020, doi: 10.1109/TPEL.2019.2916224.

S. Shanmugasundaram, “Solar based Z source inverter for high power application,” Bull. Electr. Eng. Informatics, vol. 6, no. 4, pp. 343–347, 2017, doi: 10.11591/eei.v6i4.863.

A. Belila, E. M. Berkouk, M. Benbouzid, Y. Amirat, B. Tabbache, and A. Mamoune, “Control methodology and implementation of a Z-source inverter for a stand-alone photovoltaic-diesel generator-energy storage system microgrid,” Electr. Power Syst. Res., vol. 185, p. 106385, 2020, doi: 10.1016/j.epsr.2020.106385.

M. Prasada, A. K. Akella, and A. Y. Abdelaziz, “Design and analysis of solar photovoltaic-fed Z-source inverter-based dynamic voltage restorer,” Sci. Iran., vol. 27, no. 6 D, pp. 3190–3203, 2020, doi: 10.24200/SCI.2019.51096.2000.

D. Sankar and C. A. Babu, “Design and analysis of impedance source based asymmetric inverter for PV application,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 1593–1599, 2019, doi: 10.35940/ijeat.F8693.109119.

D. Sankar and C. A. Babu, “Design and analysis of a novel quasi Z source based asymmetric multilevel inverter for PV applications,” Int. J. Power Electron. Drive Syst., vol. 11, no. 3, pp. 1368–1378, 2020, doi: 10.11591/ijpeds.v11.i3.pp1368-1378.

S. Sonar, “A new configuration of three-level ZSI using transistor clamped topology,” Energies, vol. 13, no. 6, p. 1469, 2020, doi: 10.3390/en13061469.

D. Chinmay V and D. Chaitanya V, “Optimum design of dynamic voltage restorer for voltage sag mitigation in distribution network,” Int. J. Power Electron. Drive Syst., vol. 10, no. 3, pp. 1364–1372, 2019, doi: 10.11591/ijpeds.v10.i3.1364-1372.

D. Mande, J. P. Trovão, and M. C. Ta, “Comprehensive review on main topologies of impedance source inverter used in electric vehicle applications,” World Electr. Veh. J., vol. 11, no. 2, p. 37, 2020, doi: 10.3390/WEVJ11020037.

E. Rajendran, D. C. Kumar, and D. P. Suresh, “Intensification of Power Quality Using PMSG and Cascaded Multi Cell Trans-Z-Source Inverter,” Circuits Syst., vol. 7, no. 11, pp. 3778–3793, 2016, doi: 10.4236/cs.2016.711316.

Z. Rasin, M. F. Rahman, M. Azri, M. H. N. Talib, and A. Jidin, “Design and development of grid-connected quasi-z-source pv inverter,” Int. J. Power Electron. Drive Syst., vol. 9, no. 4, pp. 1989–2005, 2018, doi: 10.11591/ijpeds.v9.i4.pp1989-2005.

M. Steinbring, M. Pacas, and M. Alnajjar, “Emulation of a micro-hydro-turbine for stand-alone power plants with Z-Source inverter,” IECON Proc. (Industrial Electron. Conf., pp. 5291–5296, 2012, doi: 10.1109/IECON.2012.6388964.

H. A. Mosalam, R. A. Amer, and G. A. Morsy, “Fuzzy logic control for a grid-connected PV array through Z-source-inverter using maximum constant boost control method,” Ain Shams Eng. J., vol. 9, no. 4, pp. 2931–2941, 2018, doi: 10.1016/j.asej.2018.10.001.

N. Saeed, A. Ibrar, and A. Saeed, “A Review on Industrial Applications of Z-Source Inverter,” J. Power Energy Eng., vol. 5, no. 9, pp. 14–31, 2017, doi: 10.4236/jpee.2017.59002.

M. Teimoori, S. H. Edjtahed, and A. H. Niasar, “Design and Simulation of Z-Source Inverter Fed Brushless DC Motor Drive Supplied With Fuel Cell for Automotive Applications,” J. Power Electron. Power Syst., vol. 6, no. 3, pp. 60–71, 2016.

M. M. Roomi, “An Overview of Carrier-based Modulation Methods for Z-Source Inverter,” Power Electron. Drives, vol. 4, no. 1, pp. 15–31, 2019, doi: 10.2478/pead-2019-0007.

R. Alla and A. Chowdhury, “Performance analysis of implanted hybrid three quasi Z source inverter designed for renewable energy conversion applications,” Electrica, vol. 21, no. 1, pp. 1–9, 2021, doi: 10.5152/ELECTRICA.2020.19068.

S. Stepenko, O. Husev, D. Vinnikov, C. Roncero-Clemente, S. Pires Pimentel, and E. Santasheva, “Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications,” Energies, vol. 12, no. 13, p. 2509, Jun. 2019, doi: 10.3390/en12132509.

M. K. Nguyen and Y. O. Choi, “PWM control scheme for quasi-switched-boost inverter to improve modulation index,” IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4037–4044, 2018, doi: 10.1109/TPEL.2017.2717487.

M. Siddique, A. Mubasher, R. F. Ahmad, K. Riaz, and N. Zahoor, “An Advanced Boost for Controlling the Gain and Minimizing the VS for ASC / SL-qZSI,” Pakistan J. Eng. Technol. PakJET, vol. 4, no. 1, pp. 52–59, 2021.

N. M. Badrul Sham, S. Aizam Zulkifli, and R. Jackson, “i-Capacitor Voltage Control for PV Z-source System with Enhanced Shoot-through,” Int. J. Power Electron. Drive Syst., vol. 9, no. 4, p. 1899, 2018, doi: 10.11591/ijpeds.v9.i4.pp1899-1911.

H. Fathi and H. Madadi, “Enhanced-Boost Z-Source Inverters with Switched Z-Impedance,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 691–703, 2016, doi: 10.1109/TIE.2015.2477346.

X. Zhu, B. Zhang, and D. Qiu, “A New Nonisolated Quasi-Z-Source Inverter with High Voltage Gain,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 3, pp. 2012–2028, 2019, doi: 10.1109/JESTPE.2018.2873805.

B. S. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range,” Trans. Environ. Electr. Eng., vol. 2, no. 1, p. 1, Jan. 2017, doi: 10.22149/teee.v2i1.68.

J. N. Barath, A. Soundarrajan, S. Stepenko, O. Husev, D. Vinnikov, and M. K. Nguyen, “Topological review of quasi-switched boost inverters,” Electron., vol. 10, no. 12, p. 1485, 2021, doi: 10.3390/electronics10121485.

S. A. Zulkifli, M. R. Sewang, S. Salimin, and N. M. B. Shah, “Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach,” in AIP Conference Proceedings, 2017, vol. 1883, p. 020044, doi: 10.1063/1.5002062.

R. Palanisamy and K. Vijayakumar, “Maximum boost control for 7-level Z-source cascaded H-bridge inverter,” Int. J. Power Electron. Drive Syst., vol. 8, no. 2, pp. 739–746, 2017, doi: 10.11591/ijpeds.v8.i2.pp739-746.

N. Sabeur, S. Mekhilef, and A. Masaoud, “Extended maximum boost control scheme based on single-phase modulator for three-phase z-source inverter,” IET Power Electron., vol. 9, no. 4, pp. 669–679, 2016, doi: 10.1049/iet-pel.2015.0124.

M. Savio and S. Murugesan, “Harmonic evaluation of Z-source PWM inverter for wind powered industrial drive applications,” Int. J. Electr. Eng. Informatics, vol. 6, no. 1, pp. 129–143, 2014, doi: 10.15676/ijeei.2014.6.1.9.

M. A. Mawlikar, “Design and Implementation of Z-source inverter using SBC,” Asian J. Converg. Technol., vol. 4, no. 2, pp. 1–8, 2018, doi: 10.33130/ASIAN.