Pengkondisi Sinyal RTD Presisi pada Terowongan Angin Indonesian Low-Speed Tunnel

Muhamad Muflih(1), Munawar Agus Riyadi(2), Ivranza Zuhdi Pane(3), Franky Surya Parulian(4),

(1) Departemen Teknik Elektro, Universitas Diponegoro; Laboratorium Aerodinamika, Aeroelastika, dan Aeroakustika, Badan Riset dan Inovasi Nasional (BRIN)
(2) Departemen Teknik Elektro, Universitas Diponegoro
(3) Laboratorium Aerodinamika, Aeroelastika, dan Aeroakustika, Badan Riset dan Inovasi Nasional (BRIN)
(4) Laboratorium Aerodinamika, Aeroelastika, dan Aeroakustika, Badan Riset dan Inovasi Nasional (BRIN)


The temperature of the Indonesian Low-Speed Tunnel (ILST) wind tunnel test section was measured using a Pt100-type Resistance Temperature Detector (RTD) sensor. With the upgrade of the Indonesian Low-Speed Tunnel - Data Acquisition and Reduction System (ILST-DARS) using Ethernet communication, an integrated RTD linearization circuit was designed with the Conditioning Unit (CU) Mk3 to replace the Newport 267B 16-bit parallel and DAS-Hub as the current RTD interface. In this research, the design of the signal conditioner uses the RTD_Linearization_v7.xls program from Texas Instruments, the LTspice simulator software, and the AMP01E precision instrumentation amplifier. Based on the calibration results in the range of 20 – 50 0C, this signal conditioner has an average deviation value of 0.38 0C (1.31%). In the wind tunnel speed variation testing with a range of 30 – 65 m/s, the RTD signal conditioner had an average deviation of 0.41 K (0.14%). The Repeatability Test procedure was carried out at a wind speed of 65 m/s with an angle of attack for the test model from -90 to 200 and data were collected 10 times at each angle. The average deviation of temperature against variations in the angle of attack of the test model in this procedure is 0.25 K (0.08%) and the average deviation of wind speed against variations in the angle of attack of the test model is 0.03 m/s (0.04%).


linearization circuit; precision instrumentation amplifier; repeatability test; RTD; wind tunnel

Full Text:



F. E. Jones, Techniques and Topics in Flow Measurement, 1st ed., Boca Raton, USA: CRC Press, 2020.

N. Risnawan, F. A. Yohanes, H. Novianti, and Y. Feriadi, “Pengukuran Kualitas Kecepatan Angin pada Terowongan Angin di ILST BBTA3,” J. Aero Technol., vol. 2, no. 1, pp. 26–36, 2018.

O. De Vries, “Equations for the Data Processing of the ILST.” NLR, Amsterdam, The Netherlands, 2017.

T. ter M. and H. Slot, “Interface Control Document for the ILST FMS Version 1.” NLR, Amsterdam, The Netherlands, 2017.

M. Oblak, M. Pirnat, and M. Boltežar, “An impedance tube submerged in a liquid for the low-frequency transmission-loss measurement of a porous material,” Appl. Acoust., vol. 139, no. 1, pp. 203–212, 2018, doi: 10.1016/j.apacoust.2018.04.014.

S. M. Iacob et al., “Plantar pressure variations induced by experimental malocclusion—a pilot case series study,” Healthc., vol. 9, no. 5, pp. 1–9, 2021, doi: 10.3390/healthcare9050599.

A. J. R. Silva, P. M. G. Moreira, M. A. P. Vaz, and J. Gabriel, “Temperature profiles obtained in thermoelastic stress test for different frequencies,” Int. J. Struct. Integr., vol. 8, no. 1, pp. 51–62, 2017, doi: 10.1108/IJSI-04-2016-0016.

J. Stetina, T. Mauder, L. Klimes, and P. Charvat, “Melting front propagation in a paraffin-based phase change material lab-scale experiment and simulations,” Therm. Sci., vol. 22, no. 6, pp. 2723–2732, 2018, doi: 10.2298/TSCI161109322S.

E. Quiles, E. Garciia, J. Cervera, and J. Vives, “Development of a Test Bench for Wind Turbine Condition Monitoring and Fault Diagnosis,” IEEE Lat. Am. Trans., vol. 17, no. 6, pp. 907–913, 2019, doi: 10.1109/TLA.2019.8896812.

S. Tiari, M. Mahdavi, and S. Qiu, “Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network,” Energy Convers. Manag., vol. 153, no. 1, pp. 362–373, 2017, doi: 10.1016/j.enconman.2017.10.019.

K. Baraya, J. A. Weibel, and S. V. Garimella, “Heat pipe dryout and temperature hysteresis in response to transient heat pulses exceeding the capillary limit,” Int. J. Heat Mass Transf., vol. 148, no. 1, pp. 1-7, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119135.

T. M. Younes, “Novel Approach of Non-linearity Analyses of Resistive Temperature Sensors,” Rev. d’Intelligence Artif., vol. 33, no. 2, pp. 159–164, 2019, doi: 10.18280/ria.330212.

C. Karan and S. Swain, “Concept and Development of Fpga Calculation and Control Method of Dependant Temperature,” Int. J. Res. Eng. Sci., vol. 7, no. 10, pp. 5–11, 2019.

B. Trump, “Analog linearization of resistance temperature detectors,” Analog Appl. Journal, Texas Instruments Inc., vol. 4, no. 1, pp. 1–6, 2011.

A. Chen, H. Y. Chen, and C. Chen, “A software improvement technique for platinum resistance thermometers,” Instruments, vol. 4, no. 2, pp. 1–12, 2020, doi: 10.3390/instruments4020015.

O. Boyko and O. Hotra, “Improvement of dynamic characteristics of thermoresistive transducers with controlled heating,” Prz. Elektrotechniczny, vol. 95, no. 5, pp. 110–113, 2019, doi: 10.15199/48.2019.05.27.

G. Yang and Y. Wen, “A Controllable DCCS-Based PT Temperature Sensor in High Precision Molecular Spectroscopy Application,” IEEE

Access, vol. 8, no. 1, pp. 42519–42528, 2020, doi: 10.1109/ACCESS.2020.2977163.

J. Jovanović and D. Denić, “Mixed-mode Method Used for Pt100 Static Transfer Function Linearization,” Meas. Sci. Rev., vol. 21, no. 5, pp. 142–149, 2021, doi: 10.2478/msr-2021-0020.

P. Carvalhaes-Dias, I. P. Ferreira, and L. F. C. Duarte, “Using the Non-linear Behavior of the Brokaw Bandgap Voltage Reference Cell to Linearize Resistance,” Sensors & Transducers, vol. 229, no. 1, pp. 61–67, 2019.

P. Divyang et al., “Design of High Accurate Universal Intelligent Temperature Transmitter,” International Journal of Science Technology & Engineering, vol. 4, no. 10, pp. 162-168, 2018.

S. Sumarkantini, “Evaluasi Kalibrasi Tranducer RTD Pt100 dan Termokopel Type K,” Epic J. Electr. Power, Instrum. Control, vol. 1, no. 2, pp. 1–9, 2018, doi: 10.32493/epic.v1i2.1328.

G. Ocokoljić, D. Damljanović, D. Vuković, and B. Rašuo, “Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility,” FME Trans., vol. 46, no. 4, pp. 429–442, 2018, doi: 10.5937/fmet1804429O.

G. Wijiatmoko, M. Taufiq, and W.I. Surya, “Implementation of ANOVA in the aerodynamics forces / moments measurement system in Indonesian Low Speed Tunnel Implementation of ANOVA in the aerodynamics forces / moments measurement system in Indonesian Low Speed Tunnel,” in Proceeding of The 6th Annual Basic Science International Conference, 2021, pp. 1–4.

T. Hessing, “Gage Repeatability and Reproducibility (R&R),” 6 Sigma Study, vol. 25, no. 1, pp. 213–225, 2018.

S. F. Beckert and W. S. Paim, “Critical analysis of the acceptance criteria used in measurement systems evaluation,” Int. J. Metrol. Qual. Eng., vol. 8, no. 23, pp. 1-9, 2017, doi: 10.1051/ijmqe/2017016.

S. J. Park and C. Ha, “Determination of optimal experimental design for ANOVA gauge R&R using stochastic programming,” Meas. J. Int. Meas. Confed., vol. 156, no. 1, pp. 1-9, 2020, doi: 10.1016/j.measurement.2020.107612.

H. Suryawinata, D. Purwanti, and S. Sunardiyo, “Sistem Monitoring Pada Panel Surya Menggunakan Data Logger Berbasis Atmega 328 Dan Real Time Clock DS1307,” J. Tek. Elektro, vol. 9, no. 1, pp. 30–36, 2017.


  • There are currently no refbacks.