Utilization of Soybeans as Bio-Catalyst in Calcite Precipitation Method for Repairing Cracks in Concrete

Rama Zaky Rahmawan(1), Muhammad Fauzan(2), Heriansyah Putra(3),


(1) IPB University
(2) IPB University
(3) IPB University

Abstract

Concrete is a material that has high compressive strength. However, concrete has a lower tensile strength than its compressive strength. As a result, the concrete often cracks and allows the entry of harmful substances such as  dan   causing corrosion of the reinforcement. Therefore, the repair method began to shift from the conventional way to the concept of self-healing concrete which involves the deposition of CaCO3. Precipitation can be done by the enzymatically – induced carbonate precipitation (EICP) method through a combination of urease, urea, and CaCl2 into a solution. This research used soybean extract as a substitute for pure urease enzyme. Variations in the concentration of soybean flour used as injection solution were variations in the content of soybean flour 15 g/L because it produced an optimum calcite mass of 2.62 grams. As a result, there was an increase in the compressive strength of BI against BR. In addition, there was a decreased value of permeability and porosity and the number of injections carried out. The increase in compressive strength, decrease in permeability, and decrease in porosity in concrete is due to CaCO3 deposition in the concrete which can cover the pores and cracks in the concrete.

Keywords

Concrete; CaCO3; Compressive strength; Permeability; Porosity

Full Text:

PDF

References

M. Pourfallahi, A. Nohegoo-shahvari, and M. Salimizadeh, “Effect of direct addition of two different bacteria in concrete as self-healing agent,” Structures, vol. 28, no. September, pp. 2646–2660, 2020, doi: 10.1016/j.istruc.2020.10.070.

D. M. Putra and D. Widjaja, “Hubungan Kuat Tarik Belah dengan Kuat Tekan Beton Ringan dengan Crumb Rubber dan Pecahan Genteng,” Rekayasa Sipil, vol. 4, no. 2, pp. 76–88, 2015.

H. Choi, M. Inoue, R. Sengoku, and H. Choi, “Strength recovery of concrete exposed to freezing-thawing by self-healing of cementitious materials using synthetic fiber,” Adv. Mater. Lett., vol. 8, no. 10, pp. 993–998, 2017, doi: 10.5185/amlett.2017.1635.

S. Bhaskar, K. M. Anwar Hossain, M. Lachemi, G. Wolfaardt, and M. Otini Kroukamp, “Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites,” Cem. Concr. Compos., vol. 82, pp. 23–33, 2017, doi: 10.1016/j.cemconcomp.2017.05.013.

L. Chen and G. Liu, “Airflow-Dust Migration Law and Control Technology Under the Simultaneous Operations of Shotcreting and Drilling in Roadways,” Arab. J. Sci. Eng., vol. 44, no. 5, pp. 4961–4969, 2019, doi: 10.1007/s13369-018-3673-5.

P. Chindasiriphan, H. Yokota, and P. Pimpakan, “Effect of fly ash and superabsorbent polymer on concrete self-healing ability,” Constr. Build. Mater., vol. 233, p. 116975, 2020, doi: 10.1016/j.conbuildmat.2019.116975.

A. Kanellopoulos, T. S. Qureshi, and A. Al-Tabbaa, “Glass encapsulated minerals for self-healing in cement based composites,” Constr. Build. Mater., vol. 98, pp. 780–791, 2015, doi: 10.1016/j.conbuildmat.2015.08.127.

A. Neville, “AUTOGENOUS HEALING: A CONCRETE MIRACLE?,” Concr. Int., vol. 24, no. 11, pp. 76–82, 2002.

H. Yasuhara, D. Neupane, K. Hayashi, and M. Okamura, “Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation,” Soils Found., vol. 52, no. 3, pp. 539–549, 2012, doi: 10.1016/j.sandf.2012.05.011.

H. S. Baiq, H. Yasuhara, N. Kinoshita, H. Putra, and E. Johan, “Examination of calcite precipitation using plant-derived urease enzyme for soil improvement,” Int. J. GEOMATE, vol. 19, no. 72, pp. 231–237, 2020, doi: 10.21660/2020.72.9481.

A. Sirko and R. Brodzik, “Plant ureases: Roles and regulation,” Acta Biochim. Pol., vol. 47, no. 4, pp. 1189–1195, 2000, doi: 10.18388/abp.2000_3972.

R. A. Zulfikar, H. Putra, and H. Yasuhara, “Utilization of Soybean as Catalyst Material in Enzyme-Mediated Calcite Precipitation (EMCP) for Crack Healing Concrete,” J. Civ. Eng. Forum, vol. 1000, no. 1000, pp. 1–11, 2020, doi: 10.22146/jcef.57889.

H. Putra, H. Yasuhara, and N. Kinoshita, “Optimum condition for the application of enzyme-mediated calcite precipitation technique as soil improvement method,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 6, pp. 2145–2151, 2017, doi: 10.18517/ijaseit.7.6.3425.

W. S. Sidik, H. Canakci, I. H. Kilic, and F. Celik, “Applicability of biocementation for organic soil and its effect on permeability,” Geomech. Eng., vol. 7, no. 6, pp. 649–663, 2014, doi: 10.12989/gae.2014.7.6.649.

B. Knorr, “Enzyme-Induced Carbonate Precipitation for the Mitigation of Fugitive Dust,” 2014.

R. Real-Guerra, F. Staniscuaski, and C. Regina, “Soybean Urease: Over a Hundred Years of Knowledge,” A Compr. Surv. Int. Soybean Res. - Genet. Physiol. Agron. Nitrogen Relationships, no. March 2018, 2013, doi: 10.5772/52106.

G. B. S. Pratama, H. Yasuhara, N. Kinoshita, and H. Putra, “Application of soybean powder as urease enzyme replacement on EICP method for soil improvement technique,” IOP Conf. Ser. Earth Environ. Sci., vol. 622, no. 1, 2021, doi: 10.1088/1755-1315/622/1/012035.

H. Prabowo, “Persyaratan Durabilitas Beton Struktural Sebagai Langkah Awal Menuju Desain Umur Layan Bangunan Secara Eksplisit,” Persyaratan Durabilitas Bet. Strukt. Sebagai Langkah Awal Menuju Desain Umur Layan Bangunan Secara Eksplisit, no. May, pp. 1–7, 2017.

M. D. Aulia, “Studi eksperimental permeabilitas dan kuat tekan beton k-450 menggunakan zat adiktif conplast wp421,” Maj. Ilm. UNIKOM, vol. 10, no. 2, pp. 211–222, 2012.

H. Sugiharto, W. F. Tjong, A. Surya, and K. Wibowo, “Rancang Bangun Alat Uji Permeabilitas Beton,” Civ. Eng. Dimens., vol. 6, no. 2, pp. 94–100, 2004, [Online]. Available: http://puslit2.petra.ac.id/ejournal/index.php/civ/article/view/16117.

J. Bashir, “Bio Concrete- The Self-Healing Concrete,” Indian J. Sci. Technol., vol. 9, no. 1, pp. 1–5, 2016, doi: 10.17485/ijst/2016/v9i47/105252.

SNI1974-2011, “Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder,” Badan Stand. Nas. Indones., p. 20, 2011.

A. Gede Sutapa, “Porositas, Kuat Tekan Dan Kuat Tarik Belah Beton Dengan Agregat Kasar Batu Pecah Pasca Dibakar,” J. Ilm. Tek. Sipil, vol. 15, no. 1, pp. 50–57, 2011.

ASTM-C642, “ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” Annu. B. ASTM Stand., no. 3, pp. 1–3, 2013, [Online]. Available: https://www.astm.org/Standards/C642%0Ahttp://www.copyright.com/%0Ahttp://www.astm.org/cgi-bin/resolver.cgi?C642.

R. Mardiah, A. Kamaldi, and M. Olivia, “SEBAGAI SUBSTITUSI SEMEN DI AIR GAMBUT,” vol. 5, pp. 1–5, 2018.

PBI, “Peraturan Beton Bertulang Indonesia 1971,” Peratur. Bet. Indones. 1971, 1971.

Departemen PU, “Spesifikasi umum beton,” Puslitbang Prasarana Transp. Div. 7, p. 720, 2018.

ASTM C 33, “ASTM C 33-03. Standard Specification for Concrete Aggregates,” United States Am. Stand. Test. Mater., vol. i, no. C, pp. 1–11, 1986.

SNI 1969, “Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus,” Badan Stand. Nas., pp. 7–18, 2008, [Online]. Available: http://sni.litbang.pu.go.id/index.php?r=/sni/new/sni/detail/id/195.

SNI 1970, “Standar Nasional Indonesia Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus,” Badan Standar Nas. Indones., 2008.

K. Tjokrodimuljo, Teknologi Beton. Yogyakarta: Universitas Gajah Mada, 1995.

H. Nakamura, T. Nanri, T. Miura, and S. Roy, “Experimental investigation of compressive strength and compressive fracture energy of longitudinally cracked concrete,” Cem. Concr. Compos., vol. 93, no. December 2017, pp. 1–18, 2018, doi: 10.1016/j.cemconcomp.2018.06.015.

J. Simanjuntak and T. Saragi, “Hubungan perawatan beton dengan kuat tekan (pengujian laboratorium),” J. Poliprofesi, vol. 10, no. 1, pp. 1–6, 2015.

R. Siddique et al., “Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust,” Constr. Build. Mater., vol. 106, pp. 461–469, 2016, doi: 10.1016/j.conbuildmat.2015.12.112.

N. Chahal, R. Siddique, and A. Rajor, “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume,” Constr. Build. Mater., vol. 37, pp. 645–651, 2012, doi: 10.1016/j.conbuildmat.2012.07.029.

Z. M. Ihsani and H. Putra, “The Utilization of Milk as a Catalyst Material in Enzyme-Mediated Calcite Precipitation ( EMCP ) for Crack-Healing in Concrete The Utilization of Milk as a Catalyst Material in Enzyme-Mediated Calcite Precipitation ( EMCP ) for Crack-Healing in Concrete,” Civ. Eng. Dimens., vol. 23, no. 1, pp. 54–61, 2021, doi: 10.9744/CED.23.1.54-61.

B. Madhu Sudana Reddy and D. Revathi, “An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete,” Mater. Today Proc., vol. 19, no. xxxx, pp. 803–809, 2019, doi: 10.1016/j.matpr.2019.08.135.

D. K. Mutitu, J. M. Wachira, R. Mwirichia, J. K. Thiong’o, O. M. Munyao, and G. Muriithi, “Influence of Lysinibacillus sphaericus on compressive strength and water sorptivity in microbial cement mortar,” Heliyon, vol. 5, no. 11, p. e02881, 2019, doi: 10.1016/j.heliyon.2019.e02881.

H. S. Wong, R. W. Zimmerman, and N. R. Buenfeld, “Estimating the permeability of cement pastes and mortars using image analysis and effective medium theory,” Cem. Concr. Res., vol. 42, no. 2, pp. 476–483, 2012, doi: 10.1016/j.cemconres.2011.11.018.

Q. T. Phung, N. Maes, G. De Schutter, D. Jacques, and G. Ye, “Determination of water permeability of cementitious materials using a controlled constant flow method,” Constr. Build. Mater., vol. 47, pp. 1488–1496, 2013, doi: 10.1016/j.conbuildmat.2013.06.074.

S. Zhang, K. Cao, C. Wang, X. Wang, G. Deng, and P. Wei, “Influence of the porosity and pore size on the compressive and splitting strengths of cellular concrete with millimeter-size pores,” Constr. Build. Mater., vol. 235, p. 117508, 2020, doi: 10.1016/j.conbuildmat.2019.117508.

N. Chahal, R. Siddique, and A. Rajor, “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete,” Constr. Build. Mater., vol. 28, no. 1, pp. 351–356, 2012, doi: 10.1016/j.conbuildmat.2011.07.042.

Refbacks

  • There are currently no refbacks.