MECHANICAL PROPERTIES OF AFTER-FIRE CONCRETE WITH RICE HUSK ASH (RHA) AS AN ADDITIONAL MATERIAL

Ngudiyono Joedono(1),


(1) Department of Civil Engineering, Faculty of Engineering, Mataram University

Abstract

The temperature above 200  oC at fire can cause reducing of the strength of concrete. To anticipate that condition, in order to enhance the strength, the use of rice husk ash (RHA) as an additional material is an alternative. The research would like to know the mechanical behavior and physical changing of after fire concrete with RHA. The specimens are concrete cylinder with 15 cm in diameter and 30 cm height. They are 54 specimens, 30 specimens are used for compression strength of normal concrete at various ages, and the less 24 specimens are used for the compression strength of after fire concrete. The test runs at 3, 7, 14, 28, and 90 days for normal concrete, and 90 days for after fire concrete. The temperatures of fire are 200, 400, 600, and      800 oC respectively with duration one hour. At temperature 200  oC, the compression strength of normal concrete lower than that of RHA concrete. In addition, at 400, 600, and 800 oC, the compression strength of normal concrete less decrease than that of RHA concrete Modulus elasticity of both normal and RHA concrete decrease after firing at 200 to 800 oC. At 400 to 600 oC, they have surface crack and color changing brown to black brown for normal concrete, also white brown for RHA concrete. At 800 ˚C, for normal concrete not only have surface cracks but also spalling. The colors of the concrete become white brown (at 600  oC), and white pink (at 800  oC).

Pada saat kebakaran, bila suhu yang terjadi di atas 200 oC, kekuatan beton akan menurun. Penambahan abu sekam padi (RHA, rice husk ash) merupakan upaya memperbaiki mutu beton. Pada penelitian ini akan dikaji seberapa jauh penurunan kekuatan dan perubahan fisik beton dengan penambahan abu sekam padi 15 % pasca kebakaran. Benda uji berupa silinder beton dengan diameter 15 cm dan tinggi 30 cm.  Jumlah benda uji sebanyak 54 sampel, 30 sampel dipakai untuk kuat tekan pada umur yang berbeda, dan 24 sampel dipakai untuk uji kuat tekan beton pasca bakar. Pengujian kuat tekan beton dilakukan pada umur 3, 7, 14, 28, dan 90 hari untuk beton pra bakar, dan 90 hari untuk beton pasca bakar  Pembakaran dilakukan pada suhu 200, 400, 600, dan 800 oC, dengan lama pembakaran masing-masing 1 jam. Pada suhu 200 oC, beton normal mengalami kenaikan kuat tekan lebih kecil bila dibandingkan dengan kuat tekan beton dengan abu sekam padi. Pada suhu 400, 600, dan 800 oC beton normal mengalami penurunan kuat tekan  lebih kecil  dari penurunan kuat tekan beton dengan abu sekam padi. Modulus elastisitas beton normal maupun beton dengan abu sekam padi pasca bakar suhu 200hingga    800 oC mengalami penurunan. Pada suhu 400hingga 600 oC, beton normal maupun beton dengan RHA mengalami retak-retak permukaan (surface crack), dan perubahan warna, menjadi abu-abu kehitaman (beton normal), dan abu-abu (beton RHA). Pada suhu 800 oC beton normal selain mengalami retak-retak permukaan juga mengalami pengelupasan (spalling). Warna beton menjadi putih keabu-abuan (suhu 600  oC) dan merah muda keputih-putihan (suhu 800  oC).

 


Keywords

after-fire concrete; rice husk ash (RHA); spalling; beton pasca-bakar; abu sekam padi; pengelupasan

Full Text:

PDF

References

Al-Shaleh, M.S., Al-Muairi, N.M. 1997. “Assesment of fire-damaged Kuwait Structures”, ASCE Journal of Material in Civil Enginering, Vol. 9, No. 1, February, pp. 7-13.

Crozier, D.A, Sanjayan, J.G, Liew, E. M. 1998. Residual Strength of High Strength Concrete Beams Exposed to High Temperature. International Conference on HPHSC, August 1998, pp. 341-352.

Durrani, A.J., Castillo, C. 1990. “Effect of Transient High temperature on High Strength Concrete”, ACI Material Journal, Vol. 83, No.1, January-February, pp. 47-53.

Hansen, T., C. 1976. Teks Book of Concrete Technology. Jakarta: Ministry of Public Work and Electrical Power, Directorate of Housing, Planning, and Urban Development and U.N. Regional Housing Devide for the Escape Region.

Lianasari, A. 1999. “Perilaku dan Rehabilitasi Struktur Beton Pasca Kebakaran“, Majalah Mahasiswa Teknik (MMT), Universitas Atma jaya Yogyakarta, Yogyakarta.

Lutfi, M. 2000. Pengaruh Penambahan Abu Sekam Padi Terhadap Kuat tekan Mortar pada Perendaman Air Laut. Skripsi S1 tidak diterbitkan. Fakultas Teknik Universitas Mataram, Mataram.

Neville, A.M. 1975. Properties of Concrete. Second Edition. The English. London: Language Book society and Pitman Publishing.

Ngudiyono. 2001. Perilaku Lentur dan Geser balok Beton Bertulang Pasca bakar Dengan Carbon Fiber Strips. Thesis S2 tidak diterbitkan. Program Pasca Sarjana, UGM, Yogyakarta.

Nurrahmah, S. 2000. Analisis Material beton Pasca Bakar. Thesis S2 tidak diterbitkan. Program Pasca Sarjana, UGM, Yogyakarta.

Partowiyatmo, A. 1996. “Efek Kebakaran pada Konstruksi Beton Bertulang“, Majalah Konstruksi, Edisi February.

Poh, K.W, Bennetts, I.D. 1995. “Analisys of Structural Member Under Elevated Temperature Condition”, Journal of Structural Enginering, pp. 664-673.

Teguh, M.. 1997. Efek Panas Api Terhadap Kekuatan Beton Bertulang Tertumpu Sederhana. Makalah disajikan dalam Seminar Regional Kiprah Teknik Sipil dan Teknik Arsitektur Dalam menyongsong Era Penjagatan. Yogyakarta.

Terro, M., J., and Hamoush, S. 1999. “Effect of Confinementon Siliceous Agregate Concrete Subjected to Elevated Temperatures and Cicle Heating”, ACI Material Journal, March-April, pp. 83-89.

Zang, M.H, Maholtra, V.M. 1996. “High Performance Concrete Incorporating Rice Husk Ash as a Suplementary Cementing Material”, ACI Material Journal, March-April, pp. 81-95.

Refbacks

  • There are currently no refbacks.