Rini Kusumawardani


Liquefaction is defined as a phase of soil transition; a form of transformation from solid to liquefied state in such condition of poor drainage during a cyclic loading. This transformation is triggered by the pore water pressure accumulation, which then decreases the effective stress of soil and thus reaches a ruptured condition. The escalating pore water pressure in an undrained loading circumstance is the main factor of all phenomena of liquefaction. The previous studies considered only the sand or deposits of sand that are possible to give the affect of liquefaction. But the earthquake in Mexico (1985) revealed that the deposits of clay could also instigate liquefaction. It stimulates researchers to observe comprehensively the characteristics of clay latent as a set of liquefaction.

Liquefaction didefinisikan sebagai perubahan fase tanah dari fase padat menjadi fase cair diakibatkan karena kondisi drainasi yang tidak bagus ketika diberikan beban siklik. Perubahan ini dipicu adanya peningkatan tekanan air pori sehingga mengakibatan terjadinya penurunan tekanan efektif tanah dan akhirnya mencapai kondisi keruntuha tanah. Peningkatan tekanan air pori dalam keadaan tidak terdrainasi adalah penyebab utama terjadinya fenomena liquefaction. Penyelidikan-penyelidikan sebelumnya hanya menyatakan bahwa fenomena liquefaction hanya terjadi pada tanah pasir atau deposit tanah. Tetapi gempa bumi di Mexico (1985) menunjukkan bahwa deposit tanah lempung juga bias menjadi pemicu liquefaction. Hal tersebutlah yang menjadi pemicu para peniliti untuk menganalisis secara menyeluruh tentang liquefaction yang bias dipicu oleh keberadaan tanah lempung pada suatu lapisan tanah


liquefaction; SPT and CPT test; earthquake; liquefaction; uji SPT dan CPT; gempa bumi

Full Text:



Andrews, D. C. A. and Martin, G. R., 2000. Criteria for liquefaction of silty soils. 12th Auckland: World Conference on Earth quake Engineering, Proceedings.

Andrus, R.D., and Stokoe, K.H., 1997. Liquefaction Resistance Based On Shear Wave Velocity. Proc. NCEER workshop on evaluation of liquefaction resistance of soils, National Centre for Earthquake Engineering Resistance, New York: State University of New York, Buffalo, pp. 89-128.

ATC, 1985. Earthquake Damage Evaluation Data For California. California: ATC-13, Advanced Technology Council. Redwood City.

Chi, Y.Y., Ou Ting; L., 2003. A Study Probabilistic Evaluation Of Soil Lique faction. Journal Soil Dynamic and Earthquake Engineering pp.1-39

Idriss, I. M. 1, and Boulanger ,R. W., 2004. Semi-empirical Procedures for Evalua ting Liquefaction Potential During Earthquakes. California: Proc of 11th International Conference on Soil Dyna mics & Earthquake Engineering (ICSDEE) and The 3rd International Conference on Earthquake Geotech nical Engineering (ICEGE), Barkeley, pp. 32-56.

Johansson, J.,2000. Soil Liquefaction Web Site. Washington D.C.: Departement of Civil Engineering, University of Washingthon. http://www.ce.washington .edu

Jay, C.C., et. al., 2004. Application Of Taiwan Earthquake Loss Estimation System (TELES) On Seismic Disaster Simulation Website. Taipei: National Centre for Research on Earthquake Engineering.

Kramer, S.L., 1996. Geotechnical Earthquake Engineering. Prentice-Hall civil enginee ring and mechanics series, 653 pages

Liao SSC,, 1988. Regression Model For Evaluating Liquefaction Probability. Journal Geo technical Engineering (114),pp.389-411.

Marcuson, W.F., III, 1978. Definition of Term Related to Liquefaction. Journal of Geotechnical Engineering (104), pp 1197-2000.

Oki F.,, 1994. FEM-FDM Coupled Lique faction Analysis of A Porous Soil Using An Elasto-Plastic Model. Netherlands: Applied Scientific Re search, Vol.52, No. 3, pp 209-245.

Peng Un,, 2004. Parcyclic: Finite Element Modelling Of Earthquake Liquefaction Response On Parallel Computers. Canada: 13th World Conference on Earthquake, Vancouver, B.C., paper No. 361.

Robertson, P.K., and Wride, C.E., 1998. Evaluation Cyclic Liquefaction Potential Using The Cone Penetration Test. Canadian Geotechnical Journal, Vol. 35, pp 442-459.

Santruckova, H., 2008. Liquefaction Analysis For Belle Plaine Site. Master thesis, Universit Joseph Fourier-Grenoble INP.

Seed, R.B., 2001. Recent Advances In Soil Liquefaction Engineering And Seismic Site Response Evaluation. California: Paper No SPL-2, University of California, Berkeley, pp 1-45.

Seed, H. B., 1985. Influence Of SPT Procedures In Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering, 111(12), 1425-1445.

Seed, H. B., 1984. The Influence Of SPT Procedures In Soil Liquefaction Resistance Evaluation. California: Earthquake Engineering Research Center Report No. UCB/EERC-84/15, University of California at Berkeley.

Seed, H.B., and Idriss I.M., 1982. Ground Motion And Soil Liquefaction During Earthquake. California: Earthquake Engineering Reseach Institute Mono graph, Oakland.

Seed, H.B., and Idriss I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of Geotechnical Engi neering, ASCE, Vol. 97,pp. 1249-1273

Spring, 2004. Notes On The Standard Penetration Test. Advanced Engineering Geology & Geotechnics, University of Missouri.

Youd, T.L., 2001. Liquefaction Resistance Of Soil: Summary Report From The 1996 NCEER And 1998 NCEER/NSF Workshop On Evaluation Of Liquefac tion Resistance Of Soil. Journal of Geotechnical and Geoenvironement Engineering, Vol 127, NO 10, pp. 817-833.

Youd, T.L., and Perkins, D.M., 1978. Mapping Liquefaction-Induced Ground Failure Potential. Journal of the Geotechnical Engineering Division, Vol. 104, No. 4, April 1978, pp. 433-446.



  • There are currently no refbacks.