Daun Bintaro (Cerbera manghas): Toxicity to Instar III Larvas of Aedes aegypti Mosquito

Nur Ilmi Dwi Sasmitasari

Abstract


DHF cases tend to increase from year to year in Indonesia, so the government makes efforts to control cases of Dengue Fever (DHF) which are usually done chemically which have a negative impact on the environment and health. There is a need for safer, more effective and environmentally friendly controls, such as the use of natural ingredients as natural larvicides. One of the natural ingredients that has potential as a larvicide is Bintaro leaves (Cerbera manghas). The purpose of this study was to determine the toxicity of Bintaro leaf extract against third instar larvae of Aedes aegypti mosquitoes. This experimental study used 7 treatments of Bintaro leaf extract concentration (5 %, 15 %, 25 %, 35 %, 45 %, 65 %, 75 %), abate as a positive control, and distilled water as a negative control. Each treatment used 10 instar III Aedes aegypti larvae with 4 repetitions. The data obtained were then analyzed using probit analysis to determine the toxicity of Bintaro leaf extract to Aedes aegypti larvae by calculating the LC50 and LC90 values. The results showed that the most effective concentration was 75 % because it was able to kill 100% of the test larvae. The LC50 value of 5,097 % and the LC90 value of 25,300 % indicate that the level of toxicity is very toxic. The probit regression analysis shows that it has a linearity line equation y = 1.15 + 1.43x with a correlation (R2) of 0.512 which indicates that the correlation is strong enough..This is related to the content of flavonoids, tannins, saponins, triterpenoids which are toxic to the abdomen, nervous system and respiratory system of larvae. From the research results, it can be concluded that Bintaro extract with a concentration of 75 % can be used as a natural larvicide candidate. Furthermore, further research to see the toxicity to the environment can be done.


Keywords


Aedes aegypti, Cerbera manghas, Toxicity

References


Araujo, A. P. de, Paiva, M. H. S., & Cabral, A. M. (2019). Screening Aedes aegypti (Diptera: Culicidae) populations from Pernambuco, Brazil for resistance to Temephos, Diflubenzuron, and Cypermethrin and characterization of potential resistance mechanisms. Journal of Insect Science, 19(3), 1–15.

Araujo, I. ., Ferreira, R. ., Sena, I. ., Lima, A. ., & Carvalho, J. C. . (2018). Larvicidal effect of hydroethanolic extract from the leaves of Acmella oleracea L. R. K. Jansen in Aedes aegypti and Culex quinquefasciatus. South African Journal of Botany, 2(1), 134–140.

Banjarnahor, A. R., Triharjono, A., & Setiawan, A. (2021). Effect of fleet availability and controlling on delivery accuracy ( Case study at PT . Cardig Logistics Indonesia). Business Management Journal, 8(1), 112–122.

BPS. (2018). Jumlah kasus penyakit menurut kabupaten/kota & jenis penyakit di Provinsi Jawa Timur. Badan Pusat Statistik.

Cahyati, W. H., Asmara, W., Umniyati, S. R., & Mulyaningsih, B. (2017). The phytochemical analysis of hay infusions and papaya leaf juice as an attractant containing insecticide for Aedes aegypti. Jurnal Kesehatan Masyarakat, 12(2), 96–102.

Cahyati, W. H., Asmara, W., Umniyati, S. R., & Mulyaningsih, B. (2019). Biolarvicidal effects of papaya leaves juice against Aedes Aegypti larvae. Journal of International Dental and Medical Research, 12(2), 780–786. https://search.proquest.com/openview

Carlos, R., Garcia, M., Gianello, J., Tonn, C., & Sosa, M. (2015). Lethal and sublethal effects of triterpenes from Junellia aspera (Verbenaceae) on the grain storage insect Tribolium castaneum (Coleoptera: Tenebrionidae). Revista de La Sociedad Entomologica Argentina, 64(1–2), 45–51.

Costa, R. L., Voloch, C. M., & Schrago, C. G. (2012). Comparative evolutionary epidemiology of dengue virus serotypes. Infection, Genetics and Evolution, 12(2), 309–314.

Demok, S., Endersby-Harshman, N., Vinit, R., Timinao, L., Robinson, L. J., Susapu, M., Makita, L., Laman, M., Hoffmann, A., & Karl, S. (2019). Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in Papua New Guinea. Parasites and Vectors, 12(1), 1–8. https://doi.org/10.1186/s13071-019-3585-6

Dusfour, I., Zorrilla, P., Guidez, A., Issaly, J., Girod, R., Guillaumot, L., Robello, C., & Strode, C. (2015). Deltamethrin resistance mechanisms in Aedes aegypti populations from three French Overseas Territories Worldwide. PLoS Neglected Tropical Diseases, 9(11), 1–17. https://doi.org/10.1371/journal.pntd.0004226

Grisales, N., Poupardin, R., Gomez, S., Fonseca-Gonzalez, I., Ranson, H., & Lenhart, A. (2013). Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Neglected Tropical Diseases, 7(9). https://doi.org/10.1371/journal.pntd.0002438.t001

Gutierrez, P. M., Antepuesto, A. N., Eugenio, B. A. L., & Santos, M. F. L. (2014). Larvicidal activity of selected plant extracts against the dengue vector Aedes aegypti mosquito. International Research Journal of Biological Sviences, 3(4), 23–32.

Halsey, E. S., Marks, M. A., Gotuzzo, E., Fiestas, V., Suarez, L., Vargas, J., Aguayo, N., Madrid, C., Vimos, C., Kochel, T. J., & Laguna-Torres, V. A. (2012). Correlation of serotype-specific dengue virus infection with clinical manifestations. PLoS Neglected Tropical Diseases, 6(5), 1–10.

Halstead, S. B. (2012). Controversies in dengue pathogenesis. Paediatrics and International Child Health, 32(1), 5–9.

Hamid, P. H., Prastowo, J., Ghiffari, A., Taubert, A., & Hermosilla, C. (2017). Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS ONE, 12(12), 1–11.

Itrat, A., Khan, A., Javaid, S., Kamal, M., Khan, H., Javed, S., Kalia, S., Khan, A. H., Sethi, M. I., & Jehan, I. (2011). Knowledge, awareness and practices regarding dengue fever among the adult population of dengue hit cosmopolitan. PLoS ONE, 3(7), 1–6.

Kemenkes. (2018). Situasi penyakit demam berdarah di Indonesia tahun 2018. InfoDatin 2018.

Kinney, M. P., Panting, N. D., & Clark, T. M. (2014). Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: Shifts between distinct feeding modes and the influence of feeding status. Journal of Experimental Biology, 217(6), 935–943. https://doi.org/10.1242/jeb.094904

Kristiana, I. D., Ratnasari, E., & Haryono, T. (2015). Pengaruh ekstrak daun bintaro ( Cerbera odollam ) terhadap mortalitas larva nyamuk Aedes aegypti. Jurnal Lentera Bio, 4(2), 131–135. https://jurnalmahasiswa.unesa.ac.id/index.php/lenterabio/article/download/12621/11646

Maurya, P., Sharma, P., Lalit, M., VVermaa, M. M., & SriVastava, C. N. (2012). Larvicidal efficacy of Ocimum basilicum extracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pacific Journal of Tropical Disease, 2(2), 110–116.

McBride, C., Baier, F., Omondi, A. B., & Spitzer, S. A. (2015). Evolution of mosquito preference for humans linked to an odorant receptor. US National Library of Medicine, 2(1), 1–117.

Morales, D., Ponce, P., Cevallos, V., Espinosa, P., Vaca, D., & Quezada, W. (2019). Resistance status of Aedes aegypti to Deltamethrin, Malathion, and Temephos in Ecuador. Journal of the American Mosquito Control Association, 35(2), 113–122. https://doi.org/10.2987/19-6831.1

Patil, C D, P., R B, S., & B K, S. (2010). Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Tropical Biomedicine, 27(3), 360–365.

Rahayu, A., Saraswati, U., Supriyati, E., Kumalawati, D. A., &

Hermantara, R. (2019). Prevalence and distribution of dengue virus in Aedes aegypti in Yogyakarta city before deployment of wolbachia infected Aedes aegypti. International Journal of Environmental Research and Public Health, 10(16), 1–10.

Senthil, N., & Sengottayan. (2020). A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Frontiers in Physiology, 10(2), 1–21.

Shaalan, Canyonb, D., & Abdel, W. (2010). A review of botanical phytochemicals with mosquitocidal potential. Environmental Journal, 2(1), 1149–1166. https://doi.org/0.1016/j.envint.2005.03.003.

Sholihah, N. A., Weraman, P., & Ratu, J. (2020). Analisis spasial dan pemodelan faktor risiko kejadian DBD tahun 2016-2018 di Kota Kupang. Jurnal Kesehatan Masyarakat Indonesia, 15(1), 52–61. https://doi.org/https://doi.org/10.26714/jkmi.15.1.2020.52-61

Steinwascher, K. (2018). Competition among Aedes aegypti larvae Kurt Steinwascher. Journal PloS ONE, 13(11), 1–41. https://doi.org/. https://doi.org/10.1371/journal.

Subagiyo, A., Anwar, C., Marsum, & Hidayati, W. (2017). The killing power effectiveness of squeezed sweet orange peel to the elimination of Culex sp mosquito larvae. Journal of Medical Science And Clinical Research, 05(06), 23826–23832. https://doi.org/10.18535/jmscr/v5i6.170

Suriami, Ishak, H., Syafar, M., Mallongi, A., & Rauf, A. U. (2020). Effectiveness of mosquito nests eradication abatezation for elimination of Aedes aegypti. Enfermeria Clinica, 30(4), 437–476.

Susilo, A., Haryanta, D., & Sa’adah, T. T. (2019). Response of riptortus linearis towards the aplication of Bintaro (Cerbera manghas) leaf extract. EurAsian Journal of BioSciences, 13(2), 2217–2224.

Susilo, A., Haryanta, D., & Saadah, T. T. (2020). Repellent activity of bintaro leaf extract (cerbera manghas) against spodoptera litura. Journal Systematic Reviews in Pharmacy, 11(5), 199–204.

Sutiningsih, D., Mustofa, Satoto, T. B., & Martono, E. (2017). Inhibitory effects of bruceine a biolarvicide on growth and development of aedes aegypti larvae. Journal of Entomology, 14(2), 104–111. https://doi.org/10.3923/je.2017.104.111

Ullah, A., Rehman, H. U., Awais, S., Sardar, M. A., Maalik, A., Muhammad, N., Zareen, S., Ateeq, M., Ahmad, W., Khan, F., & Saeed, K. (2016). Investigation of acute toxicity and LC50 value of Cu for a fish Oreochromis niloticus. Journal of Entomology and Zoology Studies, 4(5), 605–607. https://www.researchgate.net/profile/Abdul-Maalik-3/publication/308611574_Investigation_of_acute_toxicity_and_LC50_value_of_Cu_for_a_fish_Oreochromis_niloticus/links/5c168320a6fdcc494ffa1574/Investigation-of-acute-toxicity-and-LC50-value-of-Cu-for-a-fish-Oreochromis-niloticus.pdf?origin=publication_detail

Wahyuni, D., & Yulianto, B. (2018). Basil leaf (Ocimmum basillum form citratum) extract spray in controling Aedes aegepty. Jurnal Kesehatan Masyarakat, 14(2), 147–156.

Warikoo, R., Ray, A., Kaur, J., Samal, R., Wahab, N., & Kumar, S. (2012). Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pacific Journal of Tropical Biomedicine, 2(2), 152–155.

World Health Organisation. (2014). Dengue and severe dengue. WHO Fact Sheet, 1(2), 1–4. www.who.int/mediacentre/factsheets/fs117/en/index.html

World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito larvicides. WHO.

Yee, L. Y., Heryaman, H., & Faridah, L. (2017). The relationship between frequency of fogging focus and incidence of dengue hemorrhagic fever cases in Bandung in year 2010-2015. International Journal Of Community Medicine And Public Health, 4(2), 456–459.




DOI: https://doi.org/10.15294/kemas.v17i4.27670

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.