STUDI EKSPERIMENTAL PENGARUH RASIO VOLUME CAMPURAN MINYAK TANAH-AIR DAN PUTARAN SILINDER TERHADAP KARAKTERISTIK ALIRAN TAYLOR-COUETTE

Gunawan Muhammad Najibulloh(1), Samsudin Anis(2),


(1) Universitas Negeri Semarang
(2) 

Abstract

Tujuan penelitian ini adalah meneliti pengaruh rasio volume campuran minyak tanah-air dan laju putaran silinder terhadap karakteristik dari aliran Taylor-Couette pada Taylor-Couette Column, seperti flow regime, shear stress dan energy loss distribution. Hasil penelitian menunjukkan bahwa penambahan rasio volume air menyebabkan viskositas campuran menjadi lebih kecil, dan bilangan Reynolds akan semakin besar, maka aliran yang terjadi akan semakin turbulen, sehingga mengurangi nilai shear stress dan juga energy loss. Laju putaran silinder dalam dan luar semakin tinggi maka bilangan Reynolds semakin besar, sehingga flow regime akan semakin turbulen dan menciptakan gaya viskos yang rendah. Dengan demikian aliran Taylor-Couette akan berturbulensi tinggi, dan meningkatkan nilai shear stress dan juga energy loss.

Keywords

Taylor-Couette; laju putaran silinder; rasio campuran

Full Text:

PDF

References

Ahmad, A. L., Kusumastuti, A., Buddin, M. M. H. S., Derek, C. J. C., & Ooi, B. S. 2014. Emulsion liquid membrane based on a new flow pattern in a counter rotating Taylor-Couette column for cadmium extraction. Separation and Purification Technology, 127: 46–52.

Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. 2012. Emulsion liquid membrane for cadmium removal: Studies on emulsion diameter and stability. Desalination, 287: 30–34.

Andereck, C. D., Liu, S. S., & Swinney, H. L. 1986. Flow regimes in a circular Couette system with independently rotating cylinders. Journal of Fluid Mechanics, 164: 155–183.

Athar, M., Kamran, M., & Fetecau, C. 2010. Taylor-Couette flow of a generalized second grade fluid due to a constant couple. Nonlinear Analysis: Modelling and Control, 15(2): 155–158.

Cengel, Y. A., & Cimbala, J. M. 2013. Fluid Mechanics Fundamentals and Applications 3rd Edition. United States: McGraw-Hill Education.

Dou, H., Khoo, B. C., & Yeo, K. S. 2007. Energy loss distribution in the plane Couette flow and the Taylor – Couette flow between concentric rotating cylinders. International Journal of Thermal Sciences, 46: 262–275.

Dou, H., Khoo, B. C., & Yeo, K. S. 2008. Instability of Taylor – Couette flow between concentric rotating cylinders. International Journal of Thermal Sciences, 47(11): 1422–1435.

Sarip. 2012. Pengaruh Putaran Silinder Bagian Dalam Terhadap Pola Aliran Taylor-Couette Poiseuille. Majalah Ilmiah STTR Cepu, 15: 31–35.

Sugiyono. 2012. Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta.

Taylor, G. I. 1923. Stability of a Viscous Liquid contained between Two Rotating Cylinder. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 223(605–615): 289 LP-343.

van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C., & Lohse, D. 2012. Optimal Taylor-Couette turbulence. Journal of Fluid Mechanics, 706: 118–149.

Xiaoyan, Z., Campero, R. J., & Vigil, R. D. 2000. Axial mass transport in liquid-liquid Taylor-Couette-Poiseuille flow. Chemical Engineering Science, 55(21): 5079–5087.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License