
 Scientific Journal of Informatics
 Vol. 5, No. 1, May 2018

p-ISSN 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-ISSN 2460-0040

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 19

Genetic Algorithm for Relational Database Optimization

in Reducing Query Execution Time

Kukuh Triyuliarno Hidayat
1
, Riza Arifudin

2
, Alamsyah

3

1,2,3 Departement of Computer Science, Universitas Negeri Semarang, Indonesia

Email: 1kukuhtriyuliarno@students.unnes.ac.id, 2rizaarifudin@gmail.com, 3alamsyah@mail.unnes.ac.id

Abstract

The relational database is defined as the database by connecting between tables. Each table has

a collection of information. The information is processed in the database by using queries, such

as data retrieval, data storage, and data conversion. If the information in the table or data has a

large size, then the query process to process the database becomes slow. In this paper, Genetic

Algorithm is used to process queries in order to optimize and reduce query execution time. The

results obtained are query execution with genetic algorithm optimization to show the best

execution time. The genetic algorithm processes the query by changing the structure of the

relation and rearranging it. The fitness value generated from the genetic algorithm becomes the

best solution. The fitness used is the highest fitness of each experiment results. In this

experiment, the database used is MySQL sample database which is named as employees. The

database has a total of over 3,000,000 rows in 6 tables. Queries are designed by using 5

relations in the form of a left deep tree. The execution time of the query is 8.14247 seconds and

the execution time after the optimization of the genetic algorithm is 6.08535 seconds with the

fitness value of 0.90509. The time generated after optimization of the genetic algorithm is

reduced by 25.3%. It shows that genetic algorithm can reduce query execution time by

optimizing query in the part of relation. Therefore, query optimization with genetic algorithm

can be an alternative solution and can be used to maximize query performance.

Keywords: Relational Database, Query, Genetic Algorithm, Fitness, Execution Time

1. INTRODUCTION
The relational database is a complex system [1]. Relational model is a model that is

often used in processing the database, because there are interrelated information

tables. In the relational model, data is formed in relation [2]. Relational database

information will be stored into collections in the table [3]. Each table has data storage

and will be reused. The processing of relational database uses SQL language, or often

known as query. The SQL process is instructed by using Database Management

System (DBMS) [3-6].

Structure Query Language (SQL) can be represented in query string [4]. SQL or queries

are made from operations performed on table [3]. Query performance can slow down

when executing multiple tables of information with large data in physical storage. If that

happens, the query requires optimization with query optimizer or can also use

optimization algorithm [7]. Troubleshooting needs algorithm. Algorithm is not only

used to solve easy problems, but it can also be used on complex issues. Algorithm for

optimizations such as genetic algorithm is an easy method for optimization problems [2,

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 20

5, 8]. There is a randomly solved method in the algorithm [9, 10, 11] and belongs to the

soft computing model [12]. The genetic algorithm was introduced in the 1960s,

invented by John Holland and developed by David Goldberg [13, 14]. The genetic

algorithm consists of individuals in the population [15]. The concept is to perform a

search technique to derive a solution based on the evolutionary process [16-19]. In the

process of evolution, individuals who can survive will be obtained, so that the

individual who has experienced gene changes for many times, will be able to to adapt.

Individual changes occur through breeding. The process of genetic algorithm and the

like such as selection, crossover, and mutations to produce the best individuals [20].

Genetic algorithm is used to process database queries in order to obtain optimal

queries and best execution time. The process of genetic algorithm is by rearranging

the query on the part of the relation. Each relation is calculated for execution time to

be processed with genetic algorithm and to create fitness value. Relations are

decreased based on the execution time per relation after the genetic algorithm is

complete. The database used is a sample database with name of employees and the

table used is 6 table 5 relation.

2. METHOD
2.1. Experiment
The purpose of this experiment is to generate the best execution time by optimizing

the query by using a genetic algorithm. The experiment is useful for experimenting

with various possible genetic algorithm parameters such as crossover probabilities

and mutation probabilities. This experiment uses 100 experiments to produce the best

execution time.

2.2. System Development
Systems for genetic algorithms are created from the PHP programming language. The

system is used as a genetic algorithm tool to process queries, the result is a new query

by changing the structure of the relation. Flowchart of the system for genetic

algorithm can be seen Figure 1.

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 21

Figure 1. The Flowchart of Genetic Algorithm System

3. RESULTS AND DISCUSSION
3.1. Query and Database for Experiment

In this experiment, the database used is MySQL sample database with the name of

employees. The database can be accessed at https://github.com/datacharmer/test_db,

but the data contained in the database is selected first to get the near-to-real data.

The query used is in the form of left deep tree [3], as follows:

SELECT a.first_name, a.last_name, b.salary, c.title, d.dept_no, e.dept_name, f.emp_no
FROM employees a, salaries b, titles c, dept_emp d, departments e, dept_manager f
WHERE a.emp_no = b.emp_no AND

b.emp_no = c.emp_no AND
c.emp_no = d.emp_no AND
d.dept_no = e.dept_no AND
e.dept_no = f.dept_no AND
a.first_name = "Ramzi" AND c.title = "Senior Engineer" AND
b.salary BETWEEN 55025 AND 59700

The execution time of the query above was 8.14347 seconds.

3.2. Genetic Algorithm for Database Query

Steps to optimize relational database query with genetic algorithm can be seen in the

description below:

1) Population Formation

The initial population produces an initial solution [21]. The population is formed by

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 22

arranging chromosomes in the individual, the individual is the problem solution of the

genetic algorithm [10], each chromosome is represented as follows:

 () and ()

Where as;

T: query execution time per relation

R: query relation

t: table in database (example: table 1, table 2, etc)

i: relation number (1, 2, 3, ..,etc.)

For the T, there are only and because there are only two execution time per

relation, for example in relation a = b as and b = a as .

Individual representations uses combinations between and , but to make

individuals, it is randomly assigned by selecting or and the position of the

relation must be in position.

2) Fitness Evaluation

Fitness shows the advantages of the individual [22]. In fitness evaluation, the fitness

value of each individual will be calculated with equation 1.

∑

 (1)

Where as;

W: the execution time each chromosome

3) Crossover

The crossover process uses single point crossover or one cut point. The purpose of the

crossover is to add variation in the population [20]. The process with chromosomes in

individuals is exchanged with other individuals to create new individuals [14].

Crossover-Individuals are selected randomly based on the probability of crossover.

Chromosome positions are also randomly selected to be exchanged. Single point

crossover process can be seen in Figure 2.

Figure 2. Single Point Crossover

4) Mutation

Mutation is a modification of chromosomes in individuals [23]. Individuals are

selected on the basis of mutation probabilities and the chromosomes selected in the

mutation are also replaced by the pair of chromosomes. The mutation process can be

seen in Figure 3.

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 23

Figure 3. Mutation Process

5) Selection

After crossover, the next mutation process is selection. Selection is almost the same as

natural selection with the survival of the fittest principle [16, 17]. The selection used

is roulette wheel selection [24]. In the roulette wheel, each individual is selected

based on the number that appears in the roulette wheel. Selected individuals are

included in the population.

6) Elitism

Elitism is used to store the best individuals with the highest fitness values and

possibly will be reused in the next generation.

3.3. Experimental Result

Parameters for experiments with genetic algorithm are as follows:

1. Generation: 100

2. Population size: 120

3. The probability of crossover (PC) and mutation probability (MP) used 10 to 100

with the increment of 10.

The experiment results in this article showed 10 best experiments from 100

experiments. The best results of 10 experiments can be seen in Table 1. The computer

specification in this experiment were Windows 7 Ultimate 64 bit, 4 GB RAM, and

Intel i3 2370 processor.

Table 1. Best Experiment Result

No. PC (%) MP (%) Fitness Time (s)

1 70 50 0,90509 6,08535

2 100 50 0,9577 6,32636

3 60 90 0,93724 6,36236

4 10 90 0,94862 6,36436

5 70 70 0,95807 6,39137

6 70 40 0,94853 6,41237

7 20 30 0,93724 6,46037

8 80 70 0,92862 6,46937

9 60 30 0,92819 6,47637

10 60 70 0,94907 6,53637

In Table 1, the best execution time was 6.08535 seconds with the fitness value of

0.90509. The result was the best experiment of 100 experiments. Query results with

genetic algorithm optimization can be seen in below:

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 24

SELECT a.first_name, a.last_name, b.salary, c.title, d.dept_no, e.dept_name, f.emp_no
FROM salaries b, employees a, titles c, dept_emp d, dept_manager f, departments e
WHERE b.emp_no=c.emp_no AND

c.emp_no=d.emp_no AND
b.emp_no=a.emp_no AND
e.dept_no=d.dept_no AND
f.dept_no=e.dept_no AND
a.first_name = "Ramzi" AND c.title = "Senior Engineer" AND
b.salary BETWEEN 55025 AND 59700

3.4. Comparison of Query and Execution Time

From the experiment results, the best results with the optimization of genetic

algorithm and without genetic algorithm can be compared, it can be seen in Table 2.

Comparison of queries can be seen in Table 3.

Table 2. Camparison of Execution Time

GA (s) No GA (s) Time Difference (s) Reduce (%)

6,08535 8,14347 2,05812 25,3

Table 3. Query Comparison

GA No GA
SELECT a.first_name, a.last_name, b.salary,
c.title, d.dept_no, e.dept_name, f.emp_no

FROM salaries b, employees a, titles c,
dept_emp d, dept_manager f, departments e

WHERE b.emp_no=c.emp_no AND

c.emp_no=d.emp_no AND
b.emp_no=a.emp_no AND
e.dept_no=d.dept_no AND
f.dept_no=e.dept_no AND
a.first_name = "Ramzi" AND
c.title = "Senior Engineer" AND
b.salary BETWEEN 55025 AND 59700

SELECT a.first_name, a.last_name, b.salary,
c.title, d.dept_no, e.dept_name, f.emp_no

FROM employees a, salaries b, titles c,
dept_emp d, departments e, dept_manager f

WHERE a.emp_no = b.emp_no AND

b.emp_no = c.emp_no AND
c.emp_no = d.emp_no AND
d.dept_no = e.dept_no AND
e.dept_no = f.dept_no AND
a.first_name = "Ramzi" AND
c.title = "Senior Engineer" AND
b.salary BETWEEN 55025 AND 59700

Where as;

GA : optimization of genetic algorithm

No GA : no genetic algorithm

In Table 2, the time decreased 25.3% of the query execution time without the genetic

algorithm. Table 3 of the FROM query showed the difference in the order, the

structure of the order is reshaped in descending manner, based on the size of the

tables in the database. WHERE query also showed the difference that the structure

was arranged in descending manner, based on the execution time per relation, but the

position of the table field for the relation was processed by genetic algorithm.

3.5. System Implementation

System of genetic algorithm was used as tools, user can fill some parameter of genetic

algorithm and query to be processed to be optimized, it can be seen in Figure 4.

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 25

Figure 4. Input of Genetic Algorithm Parameters

After filling the parameters of the genetic algorithm, the system displayed the results

of the genetic algorithm process in the form of query and execution time. The results

shown were the results of per experiment in the system, if many experiments were

performed then the user must do the same thing, but if it used the same query, the user

sould only fill the parameters of the genetic algorithm. The results of the system can

be seen in Figure 5.

Figure 5. Experiment Result of The System

4. CONCLUSION
The experiment results shows that queries with genetic algorithm optimization can

reduce execution time, if compared to queries without genetic algorithm

optimatization. Changing the order in the query can shorten the query execution time

by scrambling all possible relations. In this study, query execution time without

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 26

genetic algorithm optimatization was 8,14347 seconds and query execution time with

genetic algorithm optimatization was 6,08535 seconds and the fitness value was

0,90509. The time was reduced by 2,05812 seconds or 25.3% of the queries without

genetic algorithm optimization. The use of genetic algorithm can be an alternative

solution, but not the best result, since genetic algorithm have a random value in the

process.

5. REFERENCES
[1] Bajaj, P L. (2015). A Survey on Query Perfomance Optimization by Index

Recomendation. International Journal of Computer Appplication. 113, 36-40.
[2] Bennett, K., Ferris, M. C., & Ioannidis, Y. E. (1991). A genetic algorithm for

database query optimization (pp. 400-407). Computer Sciences Department,

University of Wisconsin, Center for Parallel Optimization.
[3] Ahmed, I., Beg, M. R., Gupta, K. K., & Mansoori, M. I. (2012). A Novel

approach of query optimization for genetic population. International Journal of

Computer Science Issues (IJCSI), 9(2), 85-91.

[4] Sharma, R. V, Pushpneel. E, & Chaundhary, E. S. (2015). Query Optimization

Concepts in Distributed Database. International Journal of engineering

Technology Science and Research 2: 60-65.

[5] Butey, P. K., Meshram, S., & Sonolikar, R. L. (2012). Query Optimization by

Genetic Algorithm. Journal of Information Technology and Engineering, 3(1),

44-51.

[6] Garg, A. & Juneja, D. (2012). A Comparison and Analysis of Various Extended

Techniques of Query Optimization. International Journal of Advantages in

Technology, 3(3), 184-194.

[7] Arebi, P., & Gonbadipoor, N. (2011, March). A Genetic Algorithm for Query

Optimization in Database Grid by Dynamic Cost Estimation. In Computer

Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference

on (pp. 81-86). IEEE.

[8] Widodo, A. W, & Mahmudy, W. F. (2010). Penerapan Algoritma Genetika Pada

Sistem Rekomendasi Wisata Kuliner. Jurnal Ilmiah Kursor 5(4): 205-211.

[9] Ashari, I. A, Muslim, M. A., & Alamsyah. (2016). Comparison Perfomance of

Genetic Algorithm and Ant Colony Optimization in Course Scheduling

Optimizing. Scientific Journal of Informatics, 3(2), 149-158.

[10] Indra, Zulfahmi & Subanar. 2014. Optimasi Biaya Distribusi Rantai Pasok Tiga

Tingkat dengan Menggunakan Algoritma Genetika. IJCCS 8(2): 189-200.

[11] Indroprasto & Suryani, E. (2012). Analisis Pengendalian Persedian Produk

dengan Metode EOQ Menggunakan Algoritma Genetika untuk Mengefisiensi

Biaya Persediaan. Jurnal Teknik ITS, 1(1), 305-309.

[12] Muzid, S. (2014). Dinamisasi Parameter Algoritma Genetika Menggunakan

Population Resizing On Fitness Improvement Fuzzy Evolutionary Algorithm

(PROFIFEA). Prosiding SNATIF, 471-478.
[13] Haupt, Randy L. & Haupt, Ellen Sue. (2004). Practical Genetic Algorithms. 2nd.

New Jersey: A John Wiley & Sons, Inc.

[14] Bayir, M. A., Toroslu, Ismail H., & Cosar, Ahmet. (2007). Genetic Algorithm

for the Multiple-Query Optimization Problem. IEEE Transaction On System.

Scientific Journal of Informatics , Vol. 5, No. 1, May 2018 27

Man. and Cybernetics-Part C: Application and Reviews 37(1), 147-153.

[15] Potgieter, A. & Engelbrencht, A.P. (2007). Genetic Algorithms for The

Structural Optimsation of Learned Polynomial Expression. Applied Mathematics

and Computation 186: 1441-1466.

[16] Petkovic, D. (2010, April). Comparison of different solutions for solving the

optimization problem of large join queries. In Advances in Databases

Knowledge and Data Applications (DBKDA), 2010 Second International

Conference on (pp. 51-55). IEEE.
[17] Li, H., & Luo, B. (2008, September). A Tree-based genetic algorithm for

distributed database. In Automation and Logistics, 2008. ICAL 2008. IEEE

International Conference on (pp. 2614-2618). IEEE.
[18] Fitriana, E. N, & Sugiharti, E. (2015). Implementasi Algoritma Genetika dengan

Teknik Kendali Logika Fuzzy untuk Mengatasi Traveling Salesman Problem

Menggunakan Matlab. UNNES Journal of Mathematics, 4(2): 114-121.

[19] Mahmudy, W. F., & Rahman, M. A. (2011). Optimasi Fungsi Multi-Obyektif

Berkendala Menggunakan Algoritma Genetika Adaptif dengan Pengkodean

Real. Jurnal Ilmiah Kursor, 6(1): 19-26.

[20] Hoseini, P., & Shayetsteh, M. G. (2013). Efficient Contrast Enhancement of

Images using Hibrid Ant Colony Optimization, Genetic Algorithm, and

Simulated Annealing. Digital Signal Processing, 23(3): 879-893.

[21] Arifudin, R. (2012). Optimasi Penjadwalan Proyek dengan Penyeimbangan

Biaya Menggunakan Kombinasi CPM dan Algoritma Genetika. Jurnal

Masyarakat Informatika, 2(4): 1-14.

[22] Sofwan, Aghus, Handoyo, Eko, & WD, Ramadhony. (2008). Algoritma

Genetika Dalam Pemilihan Spesifikasi Komputer. Seminar Nasional Aplikasi

Teknologi Informasi. Yogyakarta. 1-6.

[23] Purwana, N., Esmeralda Djamal, C., & Renaldi, F. (2016). Optimalisasi

Penempatan Dosen Pembimbing Dan Penjadwalan Seminar Tugas Akhir

Menggunakan Algoritma Genetika. In Seminar Nasional Teknologi Informasi

dan Komunikasi, Maret.
[24] Sari, F. A., Sugiharti, E., & Dwijanto. 2013. Implementasi Algoritma Genetika

untuk Menyelesaikan Traveling Salesman Problem. UNNES Journal of

Mathematics 2(2): 117-120.

