
Scientific Journal of Informatics 
Vol. 9, No. 1, May 2022 

  

p-ISSN 2407-7658  http://journal.unnes.ac.id/nju/index.php/sji  e-ISSN 2460-0040 

 

Scientific Journal of Informatics, Vol.9, No.1 May 2022 | 1 

Performance Comparison of Similarity Measure Algorithm as Data 

Preprocessing Stage: Text Normalization in Bahasa Indonesia 

 

Achmad Yohni Wahyu Finansyah1, Afiahayati2*, Vincent Michael Sutanto3 
1,2Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, 

Yogyakarta, Indonesia 
3Institute for Research Initiatives / Division of Information Science, Nara Institute of Science and Technology, Nara, Japan  

 

 

Abstract. 

Purpose: More and more data are stored in text form due to technological developments, making text data processing 

more difficult. It also causes problems in the text preprocessing algorithm, one of which is when two texts are identical, 

but are considered distinct by the algorithm. Therefore, it is necessary to normalize the text to get the standard form of 

words in a particular language. Spelling correction is often used to normalize text, but for Bahasa Indonesia, there has 
not been much research on the spell correction algorithm. Thus, there needs to be a comparison of the most appropriate 

spelling correction algorithms for the normalization process to be effective. 

Methods: In this study, we compared three algorithms, namely Levenshtein Distance, Jaro-Winkler Distance, and 

Smith-Waterman. These algorithms were evaluated using questionnaire data and tweet data, which both are in Bahasa 
Indonesia. 

Result: The fastest normalization time is obtained by the Jaro-Winkler, taking an average of 31.01 seconds for 

questionnaire data and 59.27 seconds for tweet data. The best accuracy is obtained by the Levenshtein Distance with a 

value of 44.90% for the questionnaire data and 60.04% for the tweet data.  
Novelty: The novelty of this research is to compare the similarity measure algorithm in Bahasa Indonesia. Therefore, 

the most suitable similarity measure algorithm for Bahasa Indonesia will be obtained. 
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INTRODUCTION 
The growth of the industry in the technology sector has made stored data bigger and made it difficult to 

process data. This makes research in the field of text mining continue to develop [1]. In line with this, new 

problems in text mining have also been revealed, such as large amounts of data, high dimensionality, 

various data structures, and noise in data [2]. This problem, specifically unstructured data, makes the data 

inconsistent and causes the results of natural language processing to be inaccurate [3]. One of the causes of 

unstructured data is Non-Standard Words (NSWs), which is a condition when words cannot be found in a 

dictionary. Therefore, one cannot find a specific word in the word list and also cannot derive the 

morphological meaning of the words from the dictionary [4]. The solution to this problem is text 

normalization. Text normalization is used at the data preprocessing stage, helping to remove or replace 

informal writing or NSWs into its standard form in language [4]. Text normalization can be done in various 

ways, including removing punctuation marks, changing capitalization, spell correction, and adding, 

deleting, or rearranging words [5]. 

 

The implementation of spelling correction usually uses the word that has the closest distance or highest 

similarity measure to a word in the dictionary. The algorithms for similarity measurement are divided into 

several categories, such as edit based (Levenshtein Distance, Jaro-Winkler Distance, Hamming Distance), 

token-based (n-gram), domain-dependent, and hybrid (TF-IDF) [3]. Comparison of these algorithms has 
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been done before. Nugraha [6] conducted a comparison between the Longest Common Subsequence 

algorithm with Levenshtein Distance and Jaro-Winkler Distance. 

 

The results showed that normalization using the Levenshtein Distance and Jaro-Winkler method had better 

accuracy than LCS. [3] conducted a comparison of Jaro-Winkler Distance and Smith-Waterman in 

detecting duplicate data in the English dataset. The experiment shows that Smith-Waterman matches strings 

with more accurate results than Jaro-Winkler Distance. Research on normalization has also been carried 

out for English, Arabic, French, and Burmese language [7], [8], [9].  

 

These previous works show that text normalization usually uses Levenshtein Distance or Jaro-Winkler 

Distance for spelling correction. Besides, other work shows that Smith-Waterman provides higher accuracy 

than Jaro-Winkler Distance in detecting duplicate data in British medical datasets [3]. However, there has 

never been any research comparing the performance of these algorithms on text normalization for the 

Bahasa Indonesia dataset. Therefore, a comparison of the normalization algorithm for the Bahasa 

Indonesia dataset is needed. 

 

Based on the background, this research aims to compare Levenshtein Distance, Jaro-Winkler Distance, and 

Smith-Waterman as a similarity measure algorithm for text normalization, specifically in Bahasa Indonesia. 

The parameters which will be compared are accuracy and time needed for normalizing. By choosing an 

algorithm suitable for the Bahasa Indonesia language structure, it is expected to reduce the time of 

execution and increase the accuracy when used in natural language processing. This study is an extended 

version of the authors’ thesis [10].  

 

METHODS 

In this section, all steps used in this study are explained. First, is the dataset used. The dataset used consists 

of two different types of data, which are formal-writing-style and informal-writing-style dataset. The 

dataset was preprocessed using several techniques in the following order: data cleansing, case folding, and 

normalization. Afterwards, the preprocessed data were spell-corrected using three distinct methods: the 

Levenshtein Distance, the Jaro-Winkler Distance, and the Smith-Waterman method. During the spell-

correction process, the time and performance of each method were noted. The performance of each method 

was then compared, followed by a discussion on which is the best method to be used in the scope of formal 

and informal Bahasa Indonesia. The research stages are visualized in Figure 1. 

 

 
Figure 1. Research stages 

 

Dataset 

The research will use 2 kinds of datasets in Bahasa Indonesia. The first dataset was taken from the 

questionnaire of student’s comments on the teacher. Thus, the language is more formal. The second dataset 

was acquired through web-scraping Indonesian tweets. This data has more free writing style and more NSW 

compared to the first dataset. Each dataset consists of 1500 data rows written in Bahasa Indonesia. A subset 

of the questionnaire and tweet dataset are presented in Table 1 and Table 2, respectively. 

 

Tabel 1. Subset of the questionnaire dataset 

No Questionnaire Answers 

1 Guru idaman sepanjang masa 

2 Tetaapp baik, ramah, dan sabarr ya bu 

3 Ibu terbaikkk!! 

4 Semoga pembelajaran menjadi semakin baik dsan efektif. 

5 Lebih dijelaskan lagi bagian yang sulit 
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Tabel 2. Subset of the tweet dataset 

No Tweets 

1 b’@p_genedi Wah Mantep nih Ruangguru semakin Berinovasi dengan menu baru \xf0\x9f\xa5\xb0’ 

2 “b’@edcfess2 Mulai kelas 8 nyicil2.. buat un smp aku ga bimbel, Cuma ngandelin pt di sekolah sama zenius aja 

wkwk. Alhamdulillah dapet 36 \xf0\x9f\x98\xab” 

3 b’@anakcangtip terimakasih @ruangguru_ berkatnya aku beres ujian pertama xixi’ 

4 “b’zenius error yaa? Aku bukaa di web kok “”hljsj lite: network error”” teruss… helpp” 

5 “b’mau lo quipper, zenius, ruangguru, brainly adalah jalan terbaique. https://t.co.2aBBJgcuXk” 

 

Data Cleansing, Case Folding, and Tokenization 

Before the normalization process, the data must be cleaned to reduce data variance. The data cleansing 

stage uses regular expressions to remove punctuation marks, symbols, and URLs, which often occurred 

specifically in the tweet dataset. This had to be done as URL and symbols have no contribution in the future 

process. Afterwards, the case folding and tokenization processes are carried out. The tweets will be 

converted at the case folding stage by lowercasing every letter. By lowercasing each letter, we created a 

well-uniformed dataset. At the tokenization stages, every word that exists within a sentence is tokenized 

into a list. This stage will facilitate the spell-correction stage, where when making spelling corrections, the 

input received must be in the form of a single word and not sentences. 

 

Spell Correction 

The spell correction method is important when dealing with vast user inputs, in this case, users’ tweets. 

Thus, several similarity measure algorithms will be used and compared. The algorithms that will be 

compared are Levenshtein Distance, Jaro-Winkler Distance, and Smith-Waterman. The process of spell 

correction can be seen in Figure 2. 

 

 
Figure 2. Spell correction scheme 

 

The scheme of the spelling correction process starts with checking word-by-word input with the words in 

the dictionary. The dictionaries used are the slang dictionary and the formal dictionary. The slang dictionary 

is a collection of informal words. Like other languages, Indonesian has several forms of everyday language 

[11]. Examples of slang dictionaries can be seen in Table 3. A formal dictionary is a collection of formal 

words. This dictionary is used to determine which words should be normalized by common words in the 

dictionary. Examples of formal dictionaries can be seen in Table 4. 
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Tabel 3. Slang dictionary 

Slang Formal 

Met Selamat 

Netas Menetas 

Nyenengin Menyenangkan 

Udah Sudah 

Gitu Begitu 

 

Tabel 4. Formal dictionary 

Formal 
abad 

abadi 

abal 

abar 

abdi 

 

If a word cannot be found in both dictionaries, then it is necessary to correct the spelling. Spelling correction 

is done by calculating the similarity of words to each word in a formal dictionary. The most similar 

dictionary’s word will replace the word in the dataset. In this stage, three algorithms will be used to calculate 

the similarity. The algorithm that will be compared is Levenshtein Distance, Jaro-Winkler Distance, and 

Smith-Waterman. 

 

Levenshtein Distance 

Levenshtein Distance, proposed by Vladimir Levenshtein in 1965, is an algorithm for calculating the 

distance between two texts or groups of characters [12]. This distance is calculated based on the minimum 

number of transformations of a string into another string, which includes deletion, insertion, and 

replacement [13]. The Levenshtein distance between two strings 𝑎, 𝑏 (which have lengths | 𝑎 | and | 𝑏 |) 
can be defined as (1). 

 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{
 
 

 
 𝑚𝑎𝑥(𝑖, 𝑗),   if 𝑚𝑖𝑛(𝑖, 𝑗) = 0

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎≠𝑏)

 otherwise
     (1) 

Where 1𝑎≠𝑏 is equal to 0 when 𝑎𝑖 = 𝑏𝑗 and equal to 1 otherwise. 

 

Jaro-Winkler Distance 

The Jaro-Winkler process proposed by William E. Winkler is refined by the Jaro Distance algorithm [14]. 

Jaro's distance algorithm determines the similarity value of two words by counting the number of characters 

that correspond to the two words that are not too far away and reducing the number of characters that match 

up to half of the number of characters undergoing transposition. The similarity value of the Jaro Distance 

algorithm can be calculated by (2), where |𝑠𝑖| is Length of the string 𝑠𝑖, 𝑚 is the number of macthing 

characters, and 𝑡 is the half of the number of transpositions [15]. 

 

𝑠𝑖𝑚𝑗 = {
0,𝑚 = 0

1

3
(
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+
𝑚−𝑡

𝑚
) ,𝑚 ≠ 0

       (2) 

 

The characters in 𝑠1 and 𝑠2 is declared match if the position difference in certain position is not more than: 

 

|
𝑚𝑎𝑥(|𝑠1|∙|𝑠2|)

2
| − 1         (3) 

 
Winkler added the application of penalties for inappropriate characters in the first four characters in the 

Jaro Distance algorithm. The Jaro-Winkler similarity value is defined as follows: 
 

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 𝑝(1 + 𝑠𝑖𝑚𝑗)       (4) 
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Where 𝑠𝑖𝑚𝑗 is the Jaro similarity, 𝑙 is the length of common prefix (capped at 4), and 𝑝 is a constant scaling 

factor for how much the score is adjusted upwards for having common prefixes. 

 

Smith-Waterman 

The Smith-Waterman algorithm is an algorithm used to compare two nucleotide sequences or protein 

structures in the field of bioinformatics. By applying the sequence alignment function of the Smith-

Waterman algorithm, the calculation of the text-similarity with the smith-waterman algorithm can be 

applied based on the word order [16]–[18]. 

 

The string-matching process between two strings will produce identical/similar alignment (hit) with or 

without string sequence changes such as deletion, insertion, and replacement [16]. The string matching 

between two strings 𝐴 = 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 and 𝐵 = 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 can be applied by the following steps. 

First, create a substitution matrix using equation (5). 

 

𝑠(𝑎𝑖 , 𝑏𝑗) =  ∑ 𝑠(𝑎𝑖 , 𝑏𝑗)
k
i,j         (5) 

 
If there is a match, assign +1, if there is a mismatch, assign -1, and if there is a gap, assign -2 as shown in 

(6). 

 

𝑠(𝑎𝑖 , 𝑏𝑗) = {
+1, 𝑎𝑖 = 𝑏𝑗
−1, 𝑎𝑖 ≠ 𝑏𝑗

       (6) 

 

Second, create scoring matrix 𝑀[𝑖][𝑗] where 𝑀[𝑖][0] = 0 and 𝑀[0][𝑗] = 0 . The size of the score matrix 

is set to be (𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) + 1) ∗ (𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) + 1). Third, score each element of the scoring matrix using (7): 

 

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] + 𝑆(𝑎𝑖 , 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] + 𝑐 𝑖𝑓(𝑎𝑖 , −)

𝑀[𝑖][𝑗 − 1] + 𝑐 𝑖𝑓(−, 𝑏𝑗)

     (7) 

 

With the input in the matrix being the best similarity value in the prefix of the two strings, 𝑐 is the cost of 

a gap expressed in a linear penalty gap as 𝐶𝑘 = 𝑘𝐶𝑙 where 𝑘 is the length of the gap. Fourth, traceback from 

the element with the highest score to an element with score 0, from the bottom to the top. 

 

RESULT AND DISCUSSION 
The results of this study are divided into two parts namely data from questionnaires and data from tweets. 

The results were obtained after experimenting with five repetitions. 

 

Result of the questionnaire data 

Table 5 below shows the experimental result of normalization on questionnaire data using Levenshtein 

Distance, Jaro-Winkler Distance, and Smith-Waterman.  

 

Table 5. Result of the questionnaire data 

Algorithm Time(second) Accuracy (%) 

Levenshtein Distance 47.36 44.90 

Jaro-Winkler Distance 31.01 33.62 

Smith-Waterman 437.72 37.31 

 

The Jaro-Winkler algorithm spent 31.01 seconds; the fastest running time compared to two other 

algorithms. The Levenshtein Distance algorithm spent 47.36 seconds, followed by the Smith-Waterman 

algorithm which spent the longest time processing the questionnaire data, 437.72 seconds. In the term of 

accuracy, the Levenshtein Distance algorithm scored the highest accuracy, achieving 44.90%. The Smith-

Waterman and Jaro-Winkler algorithm was followed, scoring 37.31% and 33.62%, respectively. Regarding 

running time and accuracy score, the Levenshtein Distance algorithm is better than the two others. Although 

spending longer running time than the Jaro-Winkler Distance algorithm, there is no significant difference, 

as the difference is only a few seconds. On the other side, even when the Smith-Waterman algorithm scored 

higher accuracy than the Jaro-Winkler algorithm, it does not appear to be a better option, as it spent about 

14 times longer training times than the other two algorithms. 
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Result of the tweet data 

Table 6 below shows the experimental result of normalization on the tweet data using Levenshtein Distance, 

Jaro-Winkler Distance, and Smith-Waterman. 

 

Table 6. Result of the tweet data 

Algorithm Time(second) Accuracy (%) 

Levenshtein Distance 107.24 60.04 

Jaro-Winkler Distance 69.27 54.69 

Smith-Waterman 973.27 46.77 

 

The Jaro-Winkler Distance algorithm spent the fastest running time of 69.27 seconds, followed by the 

Levenshtein Distance algorithm and the Smith-Waterman algorithm, which scored 107.24 seconds and 

973.27 seconds, respectively. In terms of accuracy, the Levenshtein Distance algorithm achieved 60.04%. 

The Jaro-Winkler Distance achieved 54.69%, and the Smith-Waterman algorithm achieved 46.77%. In line 

with the result of the questionnaire data, the Levenshtein Distance performs better compared to the others. 

Although, there are differences in the gap of time and accuracy between the Levenshtein Distance and Jaro-

Winkler Distance compared to the previous section. Firstly, the gap in time between the Levenshtein 

Distance and Jaro-Winkler Distance is increased by around 38 seconds (around 17 seconds on the 

questionnaire dataset). Secondly, the gap in accuracy scores between these two algorithms is narrowed, 

having approximately 5.35% in differences (around 11.28% on the questionnaire dataset). Also, in this 

experiment, the Smith-Waterman algorithm did not score any better than others in terms of time and 

accuracy. 

 

CONCLUSION 

Based on the experimental results, it can be concluded that the Jaro-Winkler Distance algorithm can 

normalize the two Indonesian datasets quickly. However, in terms of accuracy, the Levenshtein Distance 

algorithm provides relatively better results compared to Jaro-Winkler and Smith-Waterman. The Smith-

Waterman algorithm may not be a better choice because it consumes much time and has mediocre accuracy 

scores. 
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