Scheduling Optimization of Sugarcane Harvest Using Simulated Annealing Algorithm

Eka Nur Afifah, Alamsyah Alamsyah, Endang Sugiharti

Abstract


Scheduling is one of the important part in production planning process. One of the factor that influence the smooth production process is raw material supply. Sugarcane supply as the main raw material in the making of sugar is the most important componen. The algorithm that used in this study was Simulated Annealing (SA) algorithm. SA apability to accept the bad or no better solution within certain time distinguist it from another local search algorithm. Aim of this study was to implement the SA algorithm in scheduling the sugarcane harvest process so that the amount of sugarcane harvest not so differ from mill capacity of the factory. Data used in this study were 60 data from sugarcane farms that ready to cut and mill capacity 1660 tons. Sugarcane harvest process in 19 days producing 33043,76 tons used SA algorithm and 27089,47 tons from factory actual result. Based on few experiments, obtained sugarcane harvest average by SA algorithm was 1651,63 tons per day and factory actual result was 1354,47 tons. Result of harvest scheduling used SA algorithm showed not so differ average from mill capacity of factory. Truck uses scheduling by SA algorithm showed average 119 trucks per day while from factory actual result was 156 trucks. With the same harvest time, SA algorithm result was greater  and the amount of used truck less than actual result of factory. Thus, can be concluded SA algorithm can make the scheduling of sugarcane harvest become more optimall compared to other methods applied by the factory nowdays.


Keywords


scheduling, harvest scheduling, simulated annealing

Full Text:

PDF

References


Baker, K.R. 1974. Introduction to Squencing and Scheduling. New York: John Wiley & Sons, Inc.

Arifudin, R. 2011. Optimasi Penjadwalan Proyek dengan Penyeimbangan Biaya Menggunakan Kombinasi CPM dan Algoritma Genetika. Jurnal Masyarakat Informatika, 2(4):1-14.

Wijayaningrum, V.N., Mahmudy, W.F., & Natsir, M.H. 2017. Optimization of Poultry Feed Composition Using Hybrid Adaptive Genetic Algorithm and Simulated Annealing. Journal of Telecommunication, Electronic and Computer Engineering, 9(2-8), 183-187.

Azmi, M.H., Sugiono, & Tantrika, C.F.M. 2015. Penjadwalan Produksi Rokok untuk Meminimalkan Maximum Tardiness menggunakan Algoritna Simulated Annealing. Jurnal Rekayasa dan Manajemen Sistem Industri, 3(2): 353-362. Murbyarto. 1984. Masalah Industri Gula di Indonesia. Yogyakarta: BPEE.

Bantacut, T., Sukardi, & Supatma, I.A. 2012. Kehilangan Gula Dalam Sistem Tebang Muat Angkut Di Pabrik Gula Sindang Laut Dan Tersana Baru Cirebon. Jurnal Teknologi Pertanian, 13(3), 199-206.

Oktaviyani., Dwijanto, & Supriyono. 2017. Optimasi Penjadwalan Produksi Dan Perencanaan Persediaan Bahan Baku Menggunakan Rantai Markov (Studi Kasus Kinken Cake & Bakery Kutoarjo). UNNES Journal of Mathematics (UJM), 5(1): 1-16.

Harison, G.I. 2012. Sistem Penunjang Keputusan Penjadwalan Transportasi Angkut Tebu. Skripsi. Bogor: Institut Pertanian Bogor.

Basuki, H. & Santosa. 2004. Modeling Dan Simulasi. Jakarta Selatan: IPTAQ Mulia Media.

Suyanto. 2014. Algoritma Optimasi: Deterministik atau Probabilistik. Yogyakarta: Graha Ilmu.

Wiktasari., & Suseno, J.E. 2016. Metode Simulated Annealing untuk Optimasi Penjadwalan Perkuliahan Perguruan Tinggi. Jurnal Sistem Informasi Bisnis, 6(2): 133-143.

Yu, V. F., Redi, A. A. N. P., Hidayat, Y. A., & Wibowo, O. J. 2017. A Simulated Annealing Heuristic For The Hybrid Vehicle Routing Problem. Applied Soft Computing, 53(2017), 119–132.

Jaroslaw, P., Czeslaw, S., & Domini, Z. 2013. Optimizing Bicriteria Flow Shop Scheduling Problem By Simulated Annealing Algoritm. Procedia of International Conference Sciencei, 18: 936 – 945.

Sugiharti, E., Firmansyah, S., & Devi, F.R. 2017. Predictive Evaluation Of Performance Of Computer Science Students Of Unnes Using Data Mining Based On Naïve Bayes Classifier (Nbc) Algorithm. Journal of Theoretical and Applied Information Technology, 95(4): 902-911.

Ashari A. I., M.A Muslim, & Alamsyah. 2016. Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing. Scientific Journal of Informatics, 3(2): 150.

Ashari, I. A., Muslim, M. A., & Alamsyah. (2016). Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing. Scientific Journal of Informatics, 3(2), 149 – 158.

Bassil, Y. 2012. A Simulation Model for Waterfall Software Development Life Cycle. International Journalof Engineering and Technology, 2(5): 742-749.

Muslim, M.A., Prasetiyo, B., & Alamsyah. 2016. Implementation Twofish Algorithm For Data Security in A Communication Network Using Library Chilkat Encryption Activex. Journal of Theoretical and Applied Information Technology, 84(3):370-375.

Purwinarko, A. 2014. Model Expertise Management Sistem di Universitas Negeri Semarang. Scientific Journal of Informatics, 1(2): 177-184).

Sugiharti, E., & Triliani, S. E. 2014. Perancangan Aplikasi Surat Masuk dan Keluar pada PT. Angkasa Pura 1 Semarang. Scientific Journal of Informatics, 1(1): 41.

Muslim, M.A., & Retno, N.A. 2014. Implementasi Cload Computing Menggunakan Metode Pengembangan Sistem Agile. Scientific Journal of Informatics, 1(1): 29-38).

Juangai, T., & Hongjun, X. 2012. Optimizing Arrival Flight Delay Scheduling Based on Simulated Annealing Algorithm. Physics Procedia: International Conference on Medical Physics and Biomedical Engineering, 33: 348-353.




DOI: https://doi.org/10.15294/sji.v5i2.14421

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.