Comparative Analysis of Certainty Factor Method and Bayes Probability Method on ENT Disease Expert System

Khairina Eka Setyaputri, Abdul Fadlil, Sunardi Sunardi

Abstract


Expert system is computer programs that mimic the thought process and expert knowledge in solving a particular problem. Basically, an expert system has various methods to diagnose various kinds of diseases experienced by humans, animals, and plants. This research analyzes the comparison of Certainty Factor method and Bayes Probability method in the expert system of Ear, Nose, and Throat (ENT) diseases. Both methods have the same basic theory of overcoming uncertainties with existing variables. The Certainty Factor method has many variables that are used as systematic knowledge, namely the weight value of the expert which is the basis of knowledge of the system and the user input weight value, while the Bayes Probability method uses only expert knowledge in the calculation. Based on a comparative analysis of the methods obtained with 10 patients data on the ENT disease expert system, the Certainty Factor method has accuracy in diagnosing the disease by 100%, while the Probability Bayes method of system accuracy is 80%. So it can be concluded that the Certainty Factor method is more accurate in diagnosing ENT than the Bayes Probability method.

Keywords


Accuracy, Bayes Probability, Certainty Factor, Expert System, Ear, Nose, and Throat

Full Text:

PDF

References


H. Listiyono, “Merancang dan Membuat Sistem Pakar,” J. Teknol. Inf. Din., vol. XIII, no. 2, pp. 115–124, 2008.

M. A. Muslim, I. I. N. Kurniawati, and E. Sugiharti, “Expert System Diagnosis Chronic Kidney Disease Based on Mamdani Fuzzy Inference System,” J. Theor. Appl. Inf. Technol., vol. 78, no. 1, pp. 70–75, 2015.

Y. Nur Istiqomah and A. Fadlil, “Sistem Pakar untuk Mendiagnosa Penyakit Saluran Pencernaan Menggunakan Metode Dempster Shafer,” J. Sarj. Tek. Inform., vol. 1, no. 1, pp. 32–41, 2013.

M. Dahria, “Pengembangan Sistem Pakar Dalam Membangun Suatu Aplikasi,” Saintikom, vol. 10, no. Sistem Pakar, pp. 199–205, 2011.

R. Wijaya, “Penggunaan Sistem Pakar dalam Pengembangan portal Informasi untuk Spesifikasi Jenis Penyakit Infeksi,” J. Inform., vol. 3, no. Sistem Pakar, pp. 63–88, 2007.

Y. Octavina and A. Fadlil, “Sistem Pakar Untuk Mendiagnosa Penyakit Pada Saluran Pernafasan dan Paru Menggunakan Metode Certainly Factor,” J. Sarj. Tek. Inform., vol. 2, no. 2, pp. 1123–1132, 2014.

Tuswanto & Abdul Fadlil, “Sistem Pakar Untuk Mendiagnosa Hama dan Penyakit Tanaman Bawang Merah Menggunakan Certainty Factor,” J. Ilm. Tek. Inf., vol. 1, no. Sistem Pakar, pp. 21–31, 2013.

D. P. S. Setyohadi, R. A. Octavia, and T. D. Puspitasari, “An Expert System for Diagnosis of Broiler Diseases using Certainty Factor,” in Journal of Physics: Conference Series, 2018, pp. 1–5.

S. Triyanto and A. Fadlil, “Sistem Pakar Untuk Mendiagnosa Penyakit Herpes Berbasis Web,” J. Sarj. Tek. Inform., vol. 2, no. 1, pp. 22–32, 2014.

H. T. Sihotang, “Sistem Pakar Untuk Mendiagnosa Penyakit Pada Tanaman Jagung Dengan Metode Bayes,” J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 1–9, 2018.

S. Mujilahwati, “Diagnosa Penyakit Tanaman Hias Menggunakan Metode Certainty Factor Berbasis Web,” J. Tek., vol. 6, no. 2, pp. 585–591, 2014.

S. Yahdin, S. Syamsuriadi, and Y. E. Rinni, “Aplikasi pengambilan keputusan pada perencanaan produksi berdasarkan teorema bayes,” Media Inform., vol. 6, no. 1, pp. 25–38, 2008.

W. Dwiparaswati, “Measurement of The Best Method Between Certainty Factor and Bayes Theorem Methods in Expert System by Using SPSS and ODM Applications,” J. Ilm. Inform. dan Komput., vol. 22, no. 2, pp. 133–144, 2017.

J. J. Mahoney and R. J. Mooney, “Comparing Methods for Refining Certainty-Factor Rule-Bases,” 1994.

S. T, E. Mulyanto, and V. Suhartono, Kecerdasan Buatan. Yogyakarta: Andi, 2010.

S. Kusumadewi, Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu, 2003.




DOI: https://doi.org/10.15294/sji.v5i2.16151

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.