Comparison of PCA and 2DPCA Accuracy with K-Nearest Neighbor Classification in Face Image Recognition

Sri Sutarti, Anggyi Trisnawan Putra, Endang Sugiharti


Face recognition is a special pattern recognition for faces that compare input image with data in database. The image has a variety and has large dimensions, so that dimension reduction is needed, one of them is Principal Component Analysis (PCA) method. Dimensional transformation on image causes vector space dimension of image become large. At present, a feature extraction technique called Two-Dimensional Principal Component Analysis (2DPCA) is proposed to overcome weakness of PCA. Classification process in 2DPCA using K-Nearest Neighbor (KNN) method by counting euclidean distance. In PCA method, face matrix is changed into one-dimensional matrix to get covariance matrix. While in 2DPCA, covariance matrix is directly obtained from face image matrix. In this research, we conducted 4 trials with different amount of training data and testing data, where data is taken from AT&T database. In 4 time testing, accuracy of 2DPCA+KNN method is higher than PCA+KNN method. Highest accuracy of 2DPCA+KNN method was obtained in 4th test with 96.88%. while the highest accuracy of PCA+KNN method was obtained in 4th test with 89.38%. More images used as training data compared to testing data, then the accuracy value tends to be greater.


Face Recognition, Feature Extraction, PCA, 2DPCA, K-Nearest Neighbor.

Full Text:



Muslim, M.A., & Retno, N.A. 2014. Implementasi Cloud Computing Menggunakan Metode Pengembangan Sistem Agile. Scientific Journal of Informatics, 1(1): 29- 38.

Pramesti, A. A., Arifudim, R., & Sugiharti, E. 2016. Expert System for Determination of Type Lenses Glasses using Forward Chaining Method. Scientific Journal of Informatics, 3(2): 177- 188.

Arief, A., & Saputra, R. 2016. Implementasi Kriptografi Kunci Publik dengan Algoritma RSA-CRT pada Aplikasi Instant Messaging. Scientific Journal of Informatics. 3(1): 46-54.

Soni, S. & Sahu, R.S. 2013. Face Recognition Based on Two Dimensional Principal Component Analysis (2DPCA) and Result Comparasion with Diffetent Classifiers. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE). 2(10): 3899-3904.

Wahyuningrum, R.T., Rosyid, B., & Permana, K. E. 2012. Pengenalan Pola Senyum Menggunakan Self Organizing Maps (SOM) Bersasis Ektraksi Fitur Two-Dimensional Principal Component Analysis (2DPCA). Prosiding SNATI. Yogyakarta: Universitas Islam Indonesia.

Manik, F.Y., & Saragih, K.S. 2017. Klasifikasi Belimbing Menggunakan Naive Bayes Berdasarkan Fitur Warna RGB. IJCCS. 11(1): 99-108.

Das, D.K. 2012. Comparative Analysis of PCA and 2DPCA in Face Recognition. International Journal of Emerging Technology and Advanced Engineering. 2(1): 330-336.

Purnama, B & Salsabila, D. 2013. Identifikasi Telapak Tangan Menggunakan 2DPCA plus PCA dan K-nearest Neighbor. Prosiding SNATI. Yogyakarta: Universitas Islam Indonesia.

Yang, J., Zhang, D., Frangi, A.F., & Yang, J.Y . 2004. Two-Dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence. 25(1): 131-137.

Sravanthi, A. 2012. A Color Face Recognition Using PCA and KNN Classifier. International Journal of Research in Advanced Computer Science Engineering. 3(11): 1-7.

Mahalle, R.P., & Nanda, S.K. 2016. A Survey on Analysis of ANN and KNN Classifier for Image Classification With Discrete Wavalet Transform. International Journal of Innovative Research in Computer and Communication Engineering. 4(11): 20193-20197.

Isnanto, R.R., Zahra, A.A., & Widianto, E.D. 2015. Analisis Kinerja Pengenalan Telapak Tangan Menggunakan Ekstraksi Ciri Principal Component Analysis (PCA) dan Overlapping Block. Scientific Journal of Informatics. 2(2): 137-146.

Aris, B. S., Inna, S., & Maulana, H. 2016. Pengenalan Citra Wajah Sebagai Identifier Menggunakan Principal Component Analysis (PCA). Jurnal Teknik Informatika.

Oliveira, L.S., Mansano, M., & Koerich, A.L. 2011. 2D Principal Component Analysis for Face and Facial-Expression Recognition. IEEE.

Dhriti & Kaur, M. 2012. K-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion. International Journal of Computer Applications. 60(14): 13-17.

Han, J., Kamber, M., & Pei, J. 2012. Data Mining: Concepts and Techniques (3nd ed). Waltham: Morgan Kaufmann.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.