Inverse Modeling Using Taylor Expansion Approach and Jacobi Matrix on Magnetic Data (Dyke/Magma Intrusion Cases)

Agus Suprianto, Wahyudi Wahyudi, Wiwit Suryanto, Ari Setiawan, Aryono Adhi, Nurul Priyantari, Supriyadi Supriyadi, Agus Subekti


The mathematical modelling of geological structures, i.e. magma intrusion or dyke, has been done,  based on magnetic data with inversion techniques using MatLab. The magnetic equation is a non-linear equation, and completion is done using a linear approach to non-linear mathematical models of magnetic data using the Taylor expansion approach and Jacobi Matrix. The first step of this research is to make synthetic data forward modelling from the magnetic equation of magma intrusion or dyke cases without errors, and the next stepping then add errors to the data. The next step is to do an inversion to get the parameters sought, i.e. depth and angle of the magma intrusion, by giving initial guesses, and then re-correct iteratively until convergent results are obtained. Finally, parameters of slope dyke or thin magma intrusion and its depth can be determined. The results obtained indicate that this technique can be used to get physical parameters sought from magnetic data for simple geological cases, i.e. dyke and magma intrusion.


Inverse modelling; Taylor expansion; Jacoby matrix; magnetic data; dyke; magma intrusion

Full Text:



Milsom. J., 2003, Field Geophysics, Third Edition, John Wiley & Sons LTD, Chichester, West Sussex, England.

Hinze.W.J., Von Frese. R.R.B., & Saad. A.H., 2013, Gravity and Magnetic Exploration, Cambridge University Press, New York.

Reynolds. J.M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, New York.

Blaikie.T.N., Ailleres.L., Betts.P.G., & Cas. R.A.F., 2014, Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversion: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia.

Suprianto.A., Wahudi, Suryanto.W., & Subekti.A., 2015, Modeling of seismic wave propagation at Tiris Geothermal Area using 2D Spectral Element Method (SEM), Applied Mechanics and Materials V.771, pp.257-260.

Vogel. C.R., 2002, Computational Methods for Inverse Problem, Society for Industrial and Applied Mathematics, Philadelphia.

Grandis. H., 2009, Pengantar Pemodelan Inversi, Himpunan Ahli Geofisika Indonesia (HAGI), Bhumi Printing, Bandung.

Beiki. M., & Pedersen. L.B., 2011, Estimating magnetic dike parameters using a non-linear constrained inversion technique: an example from the Sarna area, West Central Sweden, Geophysical Prospecting, European Association of Geoscientists & Engineers (EAGE), September.

Sharma. S.P., & Kaikkonen. P., 1998, Two-dimensional non-linear inversion of VLF-R data using simulated annealing, Geophys. J. Int., V.133, p.649-668.

Grant, F.S. & West, G.F., 1965, Interpretation Theory in Applied Geophysics, McGraw-Hill Book Company, New York.

Rambabu. H.V.,& Sinha. G.D.J.S., 1986, Magnetic anomalies over thin plates and their analysis, Proc. Indian Acad. Sci. (Earth Planet. Sci), Vol. 95, N0.3, pp.331-341.

Dondurur.D., & Oya Ankaya Pamukcu, 2003, Interpretation of magnetic anomalies from dipping dike model using inverse solution, power spectrum and Hilbert transform methods, Journal of the Balkan Geophysical Society, Vol.6, No.2., p.127-136.

Wikipedia (without years) asessed from (geology)

Ricardson R.M. & Zandt. G., 2009, Inverse Probles in Geophysics GEOS 567, Tucson, Arizona.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.