Utilization of SVM Method and Extraction of GLCM Features in Classifying Fish Images with Formalin

Muhathir Muhathir, Eka Pirdia Wanti, Ayu Pariyandani, Syed Zulkarnain Syed Idrus, Andre Hasudungan Lubis

Abstract


Purpose: Fish is a type of animal protein that can be consumed by humans to supplement protein in the body. Due to the fact that there is an abundance of fish in Indonesia, traders often experience losses because of rotting fish. A small proportion of traders tricked the buyers by mixing fish with formaldehyde to preserve fish in order to prevent fish spoilage until it can be consumed.  Thus, every fish buyer must be aware of fraud by traders. Methods: To be able to find out that the fish has been mixed with formalin, the solution offered is computerized by utilizing the GLCM feature extraction as information extraction on the fish image and the SVM method as a classification method. Result: The results showed an average accuracy of 0.784, precision of 0.799, recall of 0.784, and f-measure of 0.781. Novelty: The effect of the SVM classification method on the performance measurement of the model is not too big compared to previous studies, but it is better.

 


Keywords


Fish, Formalin, SVM, GLCM

Full Text:

PDF

References


Q. Rachmah, S. Indriani, S. Hidayah, Y. Adhelia and T. Mahmudiono, "Pendidikan Gizi Gemar Makan Ikan Sebagai Upaya Peningkataan Pengetahuan Ibu Tentang Pencegahan Stunting Di Desa Gempolmanis Kecamatan Sambeng Kabupaten Lamongan Provinsi Jawa Timur," Amarta Nutr. IAGIKMI., vol. 1, no. 1, pp. 165-170, 2020.

M. Ramadhani and D. Heru Murti, "Klasifikasi Ikan Menggunkan Orientasi Fast And Rotation Brief (ORB) dan K-Nearest Neighbor (KNN)," JUTI : J. Ilm. Teknol. Inf., vol. 16 no. 2, pp. 115-120, 2018.

H. Singgih, "Uji Kandungan Formalin Pada Ikan Asin Menggunkan Sensor Warna Dengan Bantuan FMR (Formalin Main Reagent)," J. ELTEK., vol. 11 no. 1, pp. 55-60, 2013.

A. Trisnawati and M. S. Arif, "Pelatihan Identifikasi Boraks dan Formalin Pada Makanan Di Desa Bereg, Babadan, Ponorogo," J. Widya Laksana., vol. 8 no. 1, pp. 69-74, 2019.

E. Puspaningtyas, R. B. Pamungkas and A. Hamad, "Upaya Peningkatan Pengetahuan Bahan Tmbahan Pangan Melalui Pelatihan Deteksi Kandungan Formalin dan Boraks," J. Pengabdi. Dan Pemberdaya. Masy., vol. 1 no. 1, pp. 46-54, 2017.

S. L. Poernomo "Analisis Perlindungan Hukum Konsumen Produk Makanan Kemasan Yang Beredar Di Kota Makassar," Gorontalo Law Rev., vol. 3 no. 1, pp. 40-58, 2019.

A. Pariyandani, D. A. Larasati, E. P. Wanti and M. Muhathir, "Klasifikasi Citra Ikan Berformalin Menggunakan Metode K-NN dan GLCM," Semin. Nas. Teknol. Inform. (Semant.)., pp. 42-47, 2019.

A. Pariyandani, E. P. Wanti, M. Muhathir, “Analysis of the Naïve Bayes Method in Classifying Formalized Fish Images Using GLCM Feature Extraction†J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 1, no. 2, 2020.

M. Muhathir, "Klasifikasi Ekspresi Wajah Menggunakan Bag Of Visual Words," Jite (J. Inform. Telecommun. Eng.)., vol. 1, no. 2, pp. 73-82, 2018.

J. P. Tanjung and M. Muhathir, "Classification of facial expressions using SVM and HOG," J. Inform. Telecommun. Eng., vol. 3, no. 2, pp. 210-215, 2020.

C. S. U. Dewi, S. and C. J.Harshindhi, Karang dan Ikan Terumbu Karang Pulau Bawean, Malang: UB Press, Maret 2018.

B. I. Siahaan, "Pendeteksian Ikan Berformalin Melalui Citra Mata Menggunakan Metode Probabilistic Neural Network Berbasis Android," Respositori Institussi USU., 2018.

N. R. Kinanthi, R. A. Asmara and M. Mentari, "Deteksi Ikan Bandeng Berformalin Berdasarkan Citra Insang Menggunakan Metode Naive Bayes Classifier," Semin. Nas. Teknol. Inf. dan Apl., vol. 10 , no. 1, pp. 97-103, 2018.

H. Singgih, "Uji Kandungan Formalin Pada Ikan Asin Menggunkan Sensor Warna Dengan Bantuan FMR (Formalin Main Reagent)," J. ELTEK, vol. 11 no. 1, pp. 55-60, 2013.

T. Handayani and S. Mutiara, "Pemeriksaan Kandungan Zart Kimia Formalin Pada Baksso Ikan dan Tahu," J. Katalisator, Vols. vol.5 , no.1, pp. 81-87, 2020

A. Akhmadiya, N. Nabiyev, K. Moldamurat, K. Dyusekeev and S. Atanov, "Change Detection Based Building Damage Assessment Method Using Radar Imageries With GLCM Textural Parameters," PREPRINTS, vol. 3 , no. 4, 2020.

V. A. Gunawan, L. S. Ade Putra and I. I. Fitriani , "Sistem Diagnosis Otomatis Identifikasi Penyakit Jantung Coroner Menggunakan Ekstrasi Ciri GLCM dan Klaasivikasi SVM," Jurnal Ilmiah Ilmu Komputer, vol. 15, no. 1, pp. 13-20, 2020.

J. L. Raheja, S. Kumar and A. Chaudhary, "Fabric Defect Detection Based on GLCM and Gabor Filter : a Comparison," J. Optik, pp. 1-6, 2013.

S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter, "Pegagos : Primal Estimated Sub-Gradient Solver for SVM," Spinger math. Optim. Soc., vol. 3 , no. 30, pp. 3-9, 2010.

J. Wahyudi and I. Maulida, "Pengenaln Pola Citra Kain Tradisional Menggunakan GLCM dan KNN," JTIULM., vo. 4, no. 2, pp. 43-49, 2019.

D. H. B. Kekre, S. D. Thepade, T. K. Sarode and V. Suryawanshi, "Image Retrieval Using Texture Feature Extracted From GLCM,LBG and KPE," Int. Jounal Comput. Theory Engineeering., vol. 2 no. 5, pp. 4-9, 2010.

P. Mohanaiah, P. Sathyanarayana, and L. GuruKumar , "Image Texture Feature Extration Using GLCM Approach," Int. J. Sci. Res. Publ., vol. 3, no. 5, pp. 290-295, 2013.

Tuba. E. and Stanimirovic. Z. , "Elephant Herding Optimazation Algorithm for Support Vector Machine Parameters Tuning," Int. Conf.-9th Ed. Electron.,, Comput. Artif. Intell., 2017.

T. C. Yang, P. S. Yu, K. H. Lin, C. M. Kuo, and H. W. Tseng, “Predictor selection method for the construction of support vector machine (SVM)-based typhoon rainfall forecasting models using a non-dominated sorting genetic algorithm,†Meteorol. Appl., vol. 25, no. 4, pp. 510–522, 2018.

M. H. G. Rifaldi and E. B. Setiawan , "Competence Classification of Twitter Users Using Support Vector Machine (SVM) Method," Interational Comference Inf. Commun. Technol., vol. 1, no. 1, 2019.

D. F. Indarwati, D. E. Rahmawati and S. Anam, "Klasifikasi Fungsi Senyawa Aktif Berdasarkan Data Simplified Molecular Input Line Entry System (SMILES) Menggunakan Metode Support Vector Machine (SVM)," Interational Comference Inf. Commun. Technol., vol. 3 , no. 8, pp. 7844-7850, 2019.

M. Akter Mim and Z. K.M Shawkat, “GIS-Based Analysis of Changing Surface Water in Rajshahi City Corporation Area Using Support Vector Machine (SVM), Decision Tree & Random Forest Technique,†Mach. Learn. Res., vol. 3, no. 2, pp. 11, 2018.

E. Tuba and Z. Stanimirovic. , "Elephant Herding Optimazation Algorithm for Support Vector Machine Parameters Tuning," International Conference-9th Edition Electronics.. Computer and Artificial Intelligence , 2017.

M. Muhathir, T. T. S. Sibarani and A.-K. Al-Khowarizmi, "Analysis K-Nearest Neighbors (KNN) in Identifying Tuberculosis Disease (Tb) By Utilizing Hog Feature Extraction," Al'adzkiya Int. Comput. Sci. Inf. Technol. (AIoCSIT) J., vol. 1, no. 1, 2020.

M. Muhathir. H. Mawengkang and M. Ramli, "Kombinasi Z-Fisher Transform Dan Bray Curtis Distance Untuk Pengenalan Pola Huruf Jar Pada Citra Al-Quran," J. Bisman Info, vol. 4, no. 1, 2017.

S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,†Sci. J. Informatics, vol. 7, no. 2, pp. 2407–7658, 2020.

E. P. Wanti and M. Muhathir, “Pengidentifikasian Citra Ikan Berformalin Dengan Menggunakan Metode Multilayer Perceptron,†J. Sains Komput. Inform., vol. 5, no. 1, pp. 491–502, 2021.




DOI: https://doi.org/10.15294/sji.v8i1.26806

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.