Application of Deep Learning Using Convolutional Neural Network (CNN) Method for Women’s Skin Classification

Anton Anton, Novia Farhan Nissa, Angelia Janiati, Nilam Cahya, Puji Astuti

Abstract


Purpose:  Facial skin is the skin that protects the inner part of the face such as the eyes, nose, mouth, and other. The skin of the face consists of some type, among others, normal skin, oily skin, dry skin, and combination skin. This is a problem for women because it is hard to get to know and distinguish the type of peel, this is what causes some women’s, it is hard to determine which product cosmetology and proper care for her skin type. Methods: In this study, the method of the Convolutional Neural Network (CNN) is an appropriate method to classify the type of the skin of women of age 20 – 30 years by following a few stages using Python 3.5 with a depth of three layers. In this study, the method used CNN to distinguish the type of skin of the label object of the type of skin that a normal skin type, oily, dry and combination. A combination skin type is composed of normal and dry skin types. Result: The process of learning network CNN to get the results of the value by 67%. As for the classification of Normal skin 100%, the type of the skin of the face 100% Dry, kind of Oily facial skin 100% and combination skin type (Normal and Dry) to 100%. Novelty: It can be concluded that the use of the method of CNN in automatic object recognition in distinguishing the type of leather as a material consideration in determining the object of the image. And the classification method using CNN with the Python program to be able to classify well.


Keywords


Facial Skin, CNN, Deep Learning

Full Text:

PDF

References


M. R. Farhan, A. W. Widodo, and M. A. Rahman, “Ekstraksi Ciri Pada Klasifikasi Tipe Kulit Wajah Menggunakan Metode Haar Wavelet,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2903–2909, 2019.

A. Aziz and Karpen, “Diagnosa Penyakit Kulit Wajah Menggunakan,†J. Teknol. Dan Open Source, vol. 2, no. 1, pp. 74–86, 2019.

R. Amelia, I. I. Tritoasmoro, and N. Ibrahim, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Discrete Wavelet Transform Dan Backpropagation,†E-Proceeding Eng., vol. 6, no. 2, pp. 4147–4153, 2019.

Hendriyana and Y. H. Maulana, “Identifikasi Jenis Kayu menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 70–76, 2020.

F. Endrianti, W. Setiawan, and Y. Wihardi, “Sistem Pencatatan Kehadiran Otomatis di Ruang Kelas Berbasis Pengenalan Wajah Menggunakan Metode Convolutional Neural Network ( CNN ),†JATIKOM - J. Apl. dan Teor. Ilmu Komput., vol. 1, no. 1, pp. 40–44, 2018.

H. S. Ibrahim, M. Si, U. N. Wisesty, F. Informatika, and U. Telkom, “Analisis Deep Learning Untuk Mengenali Qrs Kompleks Pada Sinyal Ecg Dengan Metode Cnn,†e-Proceeding Eng., vol. 5, no. 2, pp. 3718–3725, 2018.

M. Zufar and B. Setiyono, “Convolutional Neural Networks Untuk Pengenalan Wajah Secara Real-Time,†J. Sains dan Seni ITS, vol. 5, no. 2, p. 128862, 2016.

F. Han, J. Yao, H. Zhu, and C. Wang, “Underwater Image Processing and Object Detection Based on Deep CNN Method,†J. Sensors, vol. 2020, p. 20, 2020.

M. Elleuch, R. Maalej, and M. Kherallah, “A New design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition,†Procedia Comput. Sci., vol. 80, pp. 1712–1723, 2016.

B. Sekeroglu and I. Ozsahin, “Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks,†SLAS Technol., vol. 25, no. 6, pp. 553–565, 2020.

P. Ma, “Recognition of handwritten digit using convolutional neural network,†Proc. - 2020 Int. Conf. Comput. Data Sci. CDS 2020, vol. 19, no. 2, pp. 183–190, 2020.

S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,†Procedia Comput. Sci., vol. 132, pp. 679–688, 2018.

P. Wang, X. Zhang, and Y. Hao, “A Method Combining CNN and ELM for Feature Extraction and Classification of SAR Image,†J. Sensors, vol. 2019, 2019.

A. Patil and M. Rane, “Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition,†Smart Innov. Syst. Technol., vol. 195, pp. 21–30, 2021.

W. Lee, K. Ko, Z. Geem, K. Sim, and E. Engineering, “Method that Determining the Hyperparameter of CNN using HS algorithm,†J. Korean Inst. Intell. Syst., vol. 27, no. 1, pp. 22–28, 2017.

M. Sadeghi et al., “PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks,†J. Hydrometeorol., vol. 20, no. 12, pp. 2273–2289, 2019.

Y. Supardi and D. Dede, Semua Bisa Menjadi Programmer Python Case Study. Jakarta: Elex Media Komputindo, 2020.

A. R. Syulistyo, D. M. J. Purnomo, M. F. Rachmadi, and A. Wibowo, “Convolutions Subsampling Convolutions Gaussian connection Full connection Full connection Subsampling,†JIKI (Jurnal Ilmu Komput. dan Informasi) UI, vol. 9, no. 1, pp. 52–58, 2016.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia,†Algor, vol. 2, pp. 12–21, 2020.




DOI: https://doi.org/10.15294/sji.v8i1.26888

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.