Implementation of Decision Tree and Dempster Shafer on Expert System for Lung Disease Diagnosis

Abdul Muis Alfatah, Riza Arifudin, Much Aziz Muslim

Abstract


The expert system is a computer system that contains set of rules to solve problems like an expert. The lungs are one of the vulnerable respiratory organs. The purpose of this research is to implement decision tree and dempster shafer method on lung disease diagnosis and measure the accuracy of the system. The symptom was searched using forward chaining decision tree and the diagnosis was calculated using dempster shafer method. Dempster Shafer method calculates the possibility of a lung disease based on the density of probability value that possessed by each symptom. This research used 65 data obtained from medical record of Puskesmas Tegowanu Grobogan Regency. General symptoms and types of disease are used as a variable. Based on the results of the study, it can be concluded that the results of the diagnosis using dempster shafer method has an 83.08% accuracy.


Keywords


expert system, lung disease, Decision Tree, Dempster Shafer.

Full Text:

PDF

References


Hustinawaty, R. A. (2014). The Development of Web Based Expert System for Diagnosing Children Disease Using Php And Mysql. International Journal of Computer Trends and Technology (IJCTT), 10(4), 197-202.

Naik, V. M., & Lokhanday, S. (2012). Building a Legal Expert System for Legal Reasoning in Specific Domain-A Survey. International Journal of Computer Science & Information Technology, 4(5), 175.

Setyabudi, W.U., Sugiharti E., & Arini F.Y. 2017. Expert System Diagnosis Dental Disease Using Certainty Factor Method. Scientific Journal of Informatics, 4(1): 44.

Pramesti, A.A., Arifudin R., & Sugiharti E. 2016. Expert System for Determination of Type Lenses Glasses using Forward Chaining Method. Scientific Journal of Informatics, 3(2): 177.

Josephine, M.S. & Jeyabalaraja V. 2012. Expert System and Knowledge Management for Software Developer in Software Companies. International Journal of Information and Communication Technology Research, 3(2): 243.

Muslim, M.A., Kurniawati I., & Sugiharti E. 2015. Expert System Diagnosis Chronic Kidney Disease Based on Mamdani Fuzzy Inference System. Journal of Theoretical and Applied Information Technology, 78(1): 70.

Maseleno, A. & Md. M. Hasan. 2012. Skin Diseases Expert System using Dempster Shafer Theory. Journal Intelligent System and Applications, 5: 38-44.

Minardi, J. & Suyatno. 2016. Sistem Pakar Untuk Diagnosa Penyakit Kehamilan Menggunakan Metode Dempster Shafer dan Decisiona Tree. Jurnal SIMETRIS, 7(1).

Purwanto, A. 2015. Analisa dan Perancangan Sistem Pakar Kerusakan pada Aset UKM STIKOM Bali Menggunakan Metode Dempster Shafer. Konferensi Nasional Sistem & Informatika STMIK STIKOM 2015.

Istiqomah, N.Y & Fadlil, A. 2013. Sistem Pakar Untuk Mendiagnosa Penyakit Saluran Pencernaan Menggunakan Metode Dempster Shafer. Jurnal Sarjana Teknik Informatika, 1(1): 32-41.

Sinaga, D.M., & Sari, N. 2016. Penerapan Metode Dempster Shafer Untuk Mendiagnosa Penyakit Dari Akibat Bakteri Salmonella. Cogito Smart Journal, 2(2): 96-98.

Chowdury &Shakhawat. 2013. Fusing Probability Density Function into Dempster-Shafer Theory of Evidence for The Evaluation of Water Treatment Plant. Environt Monit Assess (2013) 185:3917-3929.

Chaabane & Ben, S. 2011. A New Method for the Estimation of Mass Function in the Dempster-Shafer’s Evidence Theory: Application to Colour Image Segmentation. Circuits Syst Signal Process (2011) 30: 55-71.

Rahmawati, E & Wibawanto, H. (2016). Sistem Pakar Diagnosis Penyakit Paru-Paru Menggunakan Metode Forward Chaining. Jurnal Teknik Elektro, 8(2): 64.

Minarni & Novriani, V. 2014. Rekayasa Perangkat Lunak Diagnosa Penyakit Paru-Paru Menggunakan Metode Backward Chaining Berbasis Web. Jurnal Teknologi Informasi & Pendidikan, 7(2) : 84-85.

Handarko, J.L., & Alamsyah A. (2015). Implementasi Fuzzy Decision Tree untuk Mendiagnosa Penyakit Hepatitis. UNNES Journal of Mathematics, 4(2): 157-164.

Gorunescu, F. (2011). Data Mining Concepts, Models and Tehniques. Intelligent Systems Reference Library, Volume 12. Springer-Verlag Berlin Heidelberg.

Rikhiana, D.E. & Fadlil, A. (2013). Implementasi Sistem Pakar Untuk Mendiagnosa Penyakit Dalam Pada Manusia Menggunakan Metode Demspter Shafer. Jurnal Sarjana Teknik Informatika, 1(1): 1-10.

Patel, U.A., & Jain N.K. (2013). New Idea in Waterfall Model for Real Time Software Development. International Journal of Engineering Research & Technology (IJERT), 2(4): 115.

Roviaji, R., & Muslim, M. A. (2017, March). Pembuatan Sistem Informasi Gardu Induk PT. PLN (Persero) App Semarang Se-Kota Semarang dengan Java Android. In Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) 2(1): 182-185.

Pressman, R.S. (2001). Software Engineering. Online. Tersedia di http://www.resource.mitfiles.com/ [diakses 18-2-2017].

Nugroho, Z. A., & Arifudin, R. (2015). Sistem Informasi Tracer Study Alumni Universitas Negeri Semarang Dengan Aplikasi Digital Maps. Scientific Journal of Informatics, 1(2), 153-160.

Putra, A. T. (2015). Pengembangan E-Lecture menggunakan Web Service Sikadu untuk Mendukung Perkuliahan di Universitas Negeri Semarang. Scientific Journal of Informatics, 1(2), 168-176.

Muslim, M. A. (2012). Pengembangan Sistem Informasi Jurusan Berbasis Web Untuk Meningkatkan Pelayanan Dan Akses Informasi. Jurnal MIPA, 35(1).

Purwinarko, A. 2014. Model Expertise Management System di Universitas Negeri Semarang. Scientific Journal of Informatics, 1(2): 177-184

Mustaqbal, M. S., Firdaus, R. F., & Rahmadi, H. (2016). Pengujian Aplikasi Menggunakan Black Box Testing Boundary Value Analysis (Studi Kasus: Aplikasi Prediksi Kelulusan SMNPTN). Jurnal Ilmiah Teknologi Informasi Terapan, 1(3): 31 -36.




DOI: https://doi.org/10.15294/sji.v5i1.13440

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.