K-Medoid Algorithm in Clustering Student Scholarship Applicants

Sofi Defiyanti, Mohamad Jajuli, Nurul Rohmawati

Abstract


Data Grouping scholarship applicants Bantuan Belajar Mahasiswa (BBM) grouped into 3 categories entitled of students who are eligible to receive, be considered, and not eligible to receive scholarship. Grouping into 3 groups is useful to make it easier to determine the scholarship recipients fuel. K-Medoids algorithm is an algorithm of clustering techniques based partitions. This technique can group data is student scholarship applicants. The purpose of this study was to measure the performance of the algorithm, this measurement in view of the results of the cluster by calculating the value of purity (purity measure) of each cluster is generated. The data used in this research is data of students who apply for scholarships as many as 36 students. Data will be converted into three datasets with different formats, namely the partial codification attribute data, attributes and attribute the overall codification of the original data. Value purity on the whole dataset of data codification greatest value is 91.67%, it can be concluded that the K-Medoids algorithm is more suitable for use in a dataset with attributes encoded format overall.


Keywords


Scholarships, Clustering, Data Mining, K-Medoids, Purity Measure

Full Text:

PDF

References


DIKTI. 2015. Pedoman umum Beasiswa dan Bantuan Biaya Pendidikan Peningkatan Prestasi Akademik (PPA). http://belmawa.ristekdikti.go.id/dev/wp- content/uploads/2015/11/PEDOMAN-BEASISWA-BBP-PPA-2015.pdf, diakses 15 Januari 2016.

Wibisono, Y., 2011. Perbandingan Partition Around Medoids (PAM) dan K- means Clustering untuk Tweets. Prosiding Konferensi Nasional Sistem Informasi, pp.25-26.

Budiman, I., Kom, M., Prahasto, I.T., ASc, M. and Yuli Christiyono, S.T., 2012.

Data Clustering Menggunakan Metodologi CRISP-DM untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma (Doctoral dissertation, Universitas Diponegoro).

Rohmawati, N. Defiyanti, S. Jajuli, M. 2015. Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jitter Jurnal Ilmiah Teknologi Informasi Terapan. Vol. I (2). 62-68.




DOI: https://doi.org/10.15294/sji.v4i1.8212

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.