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 Caulerpa lentillifera or known as sea grapes is a type of green seaweed which is rich of 

nutritional components and widespread in the tropical regions in Asia, including Indonesia. 

Moreover, C. lentillifera contains of polysaccharides, such as cellulose which has the potential 

to various applications. In this study, C. lentillifera collected from Halmahera, Indonesia was 

determined for its chemical compositions (moisture, ash, extractives, hemicellulose, α-
cellulose contents) and was extracted to obtain cellulose. Isolation of cellulose from C. 

lentillifera was done by soxhlet extracted using ethanol-benzene solvent to remove extractives, 

boiling to increase the amount of cellulose extracted, H2O2 bleaching to eliminate any 
remaining pigments and other contaminants, and freeze drying to get coarse powder of 

cellulose. The moisture content, ash, extractives, hemicellulose, α-cellulose of C. lentillifera 

were 11.94%, 31.62%, 11.53%, 35.57%, and 7.95%, respectively. The yield of cellulose 

obtained was 31.13% based on seaweed dry weight. FE-SEM (Field Emission-Scanning 

Electron Microscopy) analysis of C. lentillifera showed colonies of diatoms in elliptical shapes. 

FTIR (Fourier Transform Infrared) measurements indicating cellulose purity after extraction 

process. X-Ray Diffraction (XRD) analysis resulted some peaks of salt crystals in C. lentillifera 

and cellulose of C. lentillifera in amorphous form. After extraction, the crystallinity index of 

cellulose obtained was 37.3%. 
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INTRODUCTION 

 

Seaweed is a benthic macroalgae that is 

plentiful in Indonesia and a source of essential 

nutrients. It is recorded that Indonesia is the second 

biggest production in seaweed in the world with the 

widespread cultivated land. Besides that, seaweed 

has fast growth, can be harvested all year round, 

and the cultivation process does not require large 

areas of land, fertilizers or pesticides (Salem & 

Ismail, 2021). There are approximately 911 species 

of seaweed in Indonesia, some with high economic 

value but only several species are being mass 

cultivated. Of all the species, one type of seaweed 

cultivated in Indonesia maritime waters is Caulerpa 

lentillifera. 

C. lentillifera, or known as sea grapes is a 

type of green marine seaweed (Chlorophyceae) that is 
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widespread mostly in the tropical regions in Asia, 

including Indonesia (Nguyen et al., 2011; Nofiani 

et al., 2018) This seaweed spreads to eastern 

Indonesia, Maluku waters, Bunguran Natuna 

Islands, and Nusa Tenggara (Razai et al., 2019). C. 

lentillifera grows in shallow seas and has general 

characteristics in the form of a thallus resembling a 

stolon, having rhizoids and assimilator with round 

ramuli resembling grapes. This commodity is 

mainly utilized in terms of food, medicine, or 

beauty industry because of the superior nutrition 

contains in it (Tapotubun et al., 2020). The 

chemical compositions of seaweed might be varied 

because of climate and environmental conditions 

where it was grown. So far, chemical composition 

of C. lentillifera from Halmahera, North Maluku, 

Indonesia has not been reported yet.  

Furthermore, C. lentillifera contains 

polysaccharides as major components on the cell 

wall (Honwichit et al., 2022). Cellulose as one of 

polysaccharides in seaweed is potential for various 

applications, from conventional materials, such as 

the paper industry, to advanced materials such as 

bioplastic, composites, biomedical, and drug 

delivery (Fatriasari et al., 2019). Previous research 

showed that the cellulose content in Caulerpa sp. was 

8.7% (Nurjanah et al., 2018). Cellulose is a 

polysaccharide which is consist of β-D-glucose 

units linked via (1→4) glycosidic bonds. Cellulose 

is mainly obtained from terrestrial plants, wood and 

non-wood sources (Joseph et al., 2023). In plants, 

cellulose is building the cell walls with 

hemicellulose and lignin (Fernández-Rodríguez et 

al., 2018). However, the presence of lignin makes 

the process of isolating cellulose in plants requires 

harsh chemical treatment causing slight cellulose 

degradation (Ververis et al., 2004). Recently, 

cellulose from seaweed has increased attention due 

to the absence of lignin in seaweed leading to purer 

cellulose obtained and also the extraction process 

under milder condition so that less degraded 

cellulose (Wahlström et al., 2020). To our 

knowledge, information about C. lentillifera and 

cellulose extracted from C. lentillifera have not been 

widely discussed in the available literatures. 

Therefore, this research intends to  isolation of 

cellulose from C. lentillifera and characterization of  

C. lentillifera and its cellulose. 

 

 

 

 

MATERIALS AND METHOD 

 

Materials 

C. lentillifera was collected from 

Halmahera, North Maluku, Indonesia. Hydrogen 

peroxyde 4%, acetone, ethanol-benzene (1:2 v/v), 

NaCIO2 25%, acetic acid glacial 100%, NaOH 17%, 

NaOH 8,3%, acetic acid 10% were purchased from 

Merck Germany, aquades, and RO (Reverse 

Osmosis) water. 

 

Sample Preparation 

The collected seaweed was rinsed several 

times using tap water to remove any dirt in samples. 

Next, the samples were dried under the sun for 2 

days followed by oven at 60ᵒc for 1 day to reduce 

water content. Dried C. lentillifera were grinded with 

blender to become coarse powder. The sample used 

for the extraction of cellulose was C. lentillifera 

powder that passes through a 16 mesh sieve. 

 

Cellulose Extraction 

The extraction of cellulose from C. 

lentillifera was done using method suggested by Bar-

Shai (Bar-Shai et al., 2021) with some modification. 

C. lentillifera powder was soxhlet extracted for 6 

hours at temperature of 80ᵒC using ethanol-benzene 

(1:2 v/v) solvent to remove extractives. Next, the 

samples were boiled in water with a ratio of sample 

and water was 1:20 (v/v) at 80ᵒC for 45 minutes to 

dissolve remaining impurities and increase the 

amount of insoluble fiber such as cellulose extracted 

from seaweed. The boiled water was discarded and 

the samples then purified by 4% H2O2 solution with 

ratio 1:80 (v/v) at 80ᵒC for 5 hours to eliminate any 

remaining green pigments and other contaminants 

including hemicellulose. Next, the supernatant was 

discarded and pulp cellulose was washed by water 

until neutral.  Subsequently, cellulose was freeze-

dried to become powder. Procedure of extraction 

cellulose was shown in Figure 1. Cellulose yield 

after freeze-drying procedure, was is calculated by 

Eq. (1). 

 

Yield (%) = 
Weight of cellulose

Initial weight of seaweed
 x 100% (1) 
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Figure 1. Prosedure of extraction cellulose from C. lentillifera 

Characterization 

FTIR Measurements 

Characterization of powder and cellulose 

of C. lentillifera was conducted using the FT-IR ATR 

(Fourier Transform Infrared Attenuated Total 

Reflectance) method by Spectrum Two Perkin Elmer 

FTIR in the range of 4,000 cm−1 to 400 cm−1 to 

determine their functional groups. 

  

X-Ray Diffraction (XRD) Measurements 

XRD test of C. lentillifera powder and C. 

lentillifera cellulose was carried out using Shimadzu 

Scientific Instruments XRD-MaximaX 7000, at a 

range of 2 theta angle from 10° to 60°. The 

crystallinity index (Xc) was obtained using the Eq. 

(2). 

 

Xc = 
Ac

Aa + Ac 
  x 100% (1) 

 

where Ac is area of all the crystalline peaks, and 

Aa+Ac represents the total of all the crystalline and 

amorphous peaks.  

 

Morphological Studies 

Field emission-scanning electron 

microscopy (FE-SEM) was used to see the surface 

morphology of C. lentillifera powder. The test was 

carried out by using FE-SEM Thermo Scientific 

Quattro S, which was operating at a voltage of 1 kV 

at magnifications of 1000x. 

  

Chemical Composition Analysis 

In brief, C. lentillifera powder heated in the 

oven at 105ᵒC for 24 hours and 550ᵒC for 6 hours 

for moisture and ash contents analysis, respectively. 

Extractives content analysis was carried out using 

soxhlet method with ethanol-benzene (1:2 v/v) 

solvent at temperature of 80°C for 6 hours. 

Holocellulose content analysis was performed by 

adding 25% NaCIO2 and glacial acetic acid into 

extractive-free sample, then heated at 80˚C. 

Afterward, the sample was washed with cold water 

and acetone, then dried to obtain hollocellulose. 

Then, into the holocellulose sample was added by 

17% NaOH and aquades, and reacted for 45 min, 

then rinsed with 8.3% NaOH and aquades. Next, 

the sample was added to 10% acetic acid and 

neutralized to get α-cellulose. The hemicellulose 

content was obtained from the subtraction of 

holocellulose content by α-cellulose content. 

 

RESULTS AND DISCUSSION 

 

Extraction of Cellulose 

The extraction procedure of cellulose from 

C. lentillifera started with grinding to enhance the 

surface area for better chemical reaction (Sundari & 

Ramesh, 2012). The next step was soxhlet 

extraction using etanol-benzene solution to remove 

extractive, followed by boiling process to dissolve 

remining impurities. The boiling process resulted in 

an increase in insoluble fiber levels such as cellulose 

(Yuanita, 2010). The sample then purified by using 

hydrogen peroxide to eliminate any remaining 

green pigments and other contaminants including 

hemicellulose, which is more preferred in a 

biorefinery process from a green chemistry point of 

view. The resulting cellulose extracted from C. 

lentillifera was clear white with the yield of 31.13%, 

which is higher than cellulose obtained from other 

Caulerpa sp. up to 22.61% (Nurjanah et al., 2018).  
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Table 1. Chemical components of C. lentillifera. 

Chemical composition (%) C. lentillifera 

Halmahera, Indonesia Okinawa, Japan  

(Rabemanolontsoa & Saka, 2013) 

Moisture content  11.94 ± 0.4 - 

Ash 31.62 ± 0.4 50 

Extractives 11.53 ± 1.44 5.4 

α-cellulose 7.95 ± 1.64 5.6 

Hemicellulose 35.57 ± 0.37 20.7 

The extracted cellulose from C. lentillifera was 

presented in Figure 2. 

 

 
Figure 2. Extracted cellulose from C. lentillifera 

 

Chemical Composition of C. Lentillifera 

The chemical composition of C. lentillifera 

collected from Halmahera, Indonesia is presented 

in Table 1. The extractives, cellulose, and 

hemicellulose contents of C. lentillifera from 

Halmahera are higher than of C. lentillifera from 

Japan, except of ash content. The chemical 

component level differences of C. lentillifera might 

be influenced by their habitat, maturity level, and 

environmental conditions (Ito & Hori, 1989). The 

moisture content of C. lentillifera from Halmahera 

after drying process was 11.94±0.4%, whereas the 

ash content of C. lentillifera was 31.62±0,4%. The 

higher ash content was associated with the higher 

of mineral elements contained in C. lentillifera 

(Ratana-arporn & Chirapart, 2006). Extractives 

mostly consist of low molecular compounds soluble 

in liquids of low polarity such as fats, phenolics, 

resin acids, and waxes (Pecha & Garcia-Perez, 

2020; Rabemanolontsoa & Saka, 2013). In this 

study, C. lentillifera contains 11.53±1,44% of 

extractives content. Total of α-cellulose and 

hemicellulose in C. lentillifera from Halmahera were 

7.95±1,64% and 35.57±0.37% respectively. In 

seaweed, hemicellulose is the predominant 

carbohydrate. The majority of the hemicellulosic 

saccharides in seaweed may be caused by the 

polysaccharides from C. lentillifera were 

heteropolysaccharides, such as mannose, glucose, 

galactose, and xylose, which were the main 

constituents of hemicellulose (polyose) (Honwichit 

et al., 2022; Konishi et al., 2012; Long et al., 2020). 

 

XRD Analysis of C. Lentillifera and Extracted 

Cellulose 

From XRD graphs in Figure 3, there are 

some peaks with high intensities correspond to 

various salt crystals presented on the surface of C. 

lentillifera (Bulota & Budtova, 2015; Long et al., 

2020). Peaks at 2Ɵ of 27.3ᵒ, 31.7ᵒ, 45.5ᵒ, and 56.6ᵒ 

were confirmed as diffraction peak of halite sodium 

chlorite (NaCl) crystal (Bao et al., 2017). The XRD 

patterns of potassium chloride (KCl) contain two 

main peaks at 28.5ᵒ and 40.9ᵒ (Ismail et al., 2022). 

After going through the removal 

extractives, boiling, and bleaching process, the C. 

lentillifera cellulose XRD graphs, still showing some 

peaks of amorphous-like cellulose. The extracted 

cellulose from C. lentillifera displays three peaks at 

2Ɵ of 13.5ᵒ reflection assigned to the (1 0 1) 

crystallographic plane, broad peak at 2Ɵ of 18.8ᵒ – 

19.9ᵒ  reflection assigned to amorphous region of 

cellulose, and at 2Ɵ  of 22.8ᵒ  reflection assigned to 

the (0 0 2) or (2 0 0) crystallographic plane of 

cellulose I allomorph (Popescu et al., 2011). 

Cellulose extraction of other green seaweed, Ulva 

lactuca also resulted amorphous-like cellulose. It is 

concluded that the cellulose microfibrils as cell wall 

constituents, interwoven with xylan or mixed 

xylan-glucan polymers (Lahaye et al., 1994). The 

crystallinity index of cellulose from C. lentillifera was 

32%. The low crystallinity of extracted cellulose 

probably because it is a mixtures of cellulose with a 

xylose-glucose (xyloglucan) polysaccharide, which  
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Figure 3. XRD analysis of raw material C. lentillifera and extracted cellulose. 

 

 
Figure 4. FTIR analysis of raw material C. lentillifera and extracted cellulose. 

 

affected formation of cellulose crystals leading to a 

low crystallinity (Wahlström et al., 2020). 

Additionally, some seaweeds contain cellulose as a 

major component of their cell walls, which tends to 

make them highly crystalline, while others do not 

have cellulose as a main composition of their cell 

walls, resulting in low cellulose content and 

crystallinity in their cell walls (Mihranyan et al., 

2004). 

 

FTIR Analysis of C. Lentillifera and Extracted 

Cellulose 

The infrared spectrum of C. lentillifera and 

extracted cellulose shown broad absorbance around 

3400 – 3300 cm-1, which were associated to the 

hydroxyl groups stretching (Becerra et al., 2023). 

Moreover, there was peak at around 2919 cm−1 

mainly represent to the symmetrical or 

antisymmetrical stretching of C-H on methyl and 

methylene from the aliphatic groups on cellulose or 

hemicellulose (Chaudhari, 2016). The absorbance 

at 1647-1645 cm-1 demonstrated the stretching of 

the O-H groups as a result of the cellulose structure 

absorbing water (Arnata et al., 2020). The peak at 

1520 cm-1 in IR spectra of C. lentillifera powder 

represent the absorption of amide band II (N–H 

bending coupled with C–N stretching) from 

proteins (Long et al., 2020). After treatment to 

obtain cellulose, The peak at 1520 cm-1 disappeared, 

which means that protein was disappear 

successfully from the cellulose fraction.  
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Tabel 2. IR spectrum of functional groups of the sample based on the absorption band (cm−1). 

C-0 (cm−1) C-5 (cm−1) Group Reference 

3322 3344 O-H stretching (Becerra et al., 2023) 

2920 2920 C-H stretching (Chaudhari, 2016) 

1647 1646 Adsorbed water (Arnata et al., 2020) 

1520 - Amide band II (N-H bending) (Long et al., 2020) 

- 1419 H–C–H scissor vibration (Arnata et al., 2020) 

- 1324 H–C–H tip vibration 

1165 1165 C–O–C antisymmetric bridge 

stretching 

907 908 C-O-C stretching (Joseph et al., 2023) 

 

The increase in peak sharpness after 

bleaching at around 1419, 1324, 1165, and 908 cm−1  

owing to increase of cellulose purity levels (Arnata 

et al., 2020). The peak at 908 cm-1 is associated with 

the cellulosic β-glycosidic linkages (Joseph et al., 

2023). FT-IR spectra on C. lentillifera powder and 

extracted cellulose are presented in Figure 4. The 

typical functional groups with conforming bands 

are displayed in Table 2. 

 

SEM Analysis of C. Lentillifera 

Figure 5 shows SEM micrograph of green 

macroalgae C. lentillifera.  C. lentillifera depicts large 

number of elliptically shaped diatoms, as if forming 

a split right in the middle like a coffee bean. 

Previous study showed similar result of   C. 

lentillifera in rich colonization of elliptically shaped 

diatoms (Khan et al., 2022). 

 

 
Figure 5. SEM analysis of raw C. lentillifera. 

 

CONCLUSION 

 

This study aimed to demonstrate the 

isolation process of cellulose from C. lentillifera, the 

characterization of C. lentillifera and it’s cellulose. 

The chemical analysis of C. lentillifera collected from 

Halmahera, Indonesia show moisture content 

11.94%; ash 31.62%; extractives 11.53%; α-

cellulose 7.95%, and hemicellulose 35.57%. 

Extraction of cellulose from C. lentillifera has been 

done by soxhlet extraction using ethanol-benzene 

solvent, followed by boiling, and bleaching process 

using hydrogen peroxide. FTIR spectum showed 

purity of cellulose, which obtained by the 

disappearance of the protein functional group and 

the increasing of peak sharpness after final 

bleaching at around 1419, 1324, 1165, and 908 

cm−1. X-ray diffraction graphs of C. lentillifera 

showed the presence of various salt crystal on the 

surface of C. lentillifera. Final bleaching process 

resulted the amorphous-like cellulose, which might 

indicate that cellulose fibrils connected with xylan 

or mixed xylan-glucan polymers. SEM analysis 

shows rich elliptically shaped diatoms on the 

surface of C. lentillifera. 
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