Surface Modification With Gelatin For Polyurethane Vascular Grafts: A Review
Abstract
Keywords
Full Text:
PDFReferences
Adipurnama, I., Yang, M. C., Ciach, T., Butruk-Raszeja, B. 2017. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterial Science. 5(1): 22–37.
Alves, P., Coelho, J. F. J., Haack, J., Rota, A., Bruinink, A., Gil, M. H. 2009. Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal. 45(5): 1412–1419.
Andersson, J., Libby, P., Hansson, G.K. 2010. Adaptive immunity and atherosclerosis. Clinical Immunology. 134(1): 33–46.
Baguneid, M. S., Seifalian, A. M., Salacinski, H. J., Murray, D., Hamilton, G., Walker, M. G. 2006. Tissue engineering of blood vessels. British Journal of Surgery Society. 93(3): 282-290.
Boffito, M., Sartori, S., Ciardelli, G. 2014. Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies. Polymer International. 63(1): 2–11.
Burke, A., Hasirci, N. 2004. Biomaterials: From Molecules to Engineered Tissues. 1st Edition. Springer US, New York.
Butruk-Raszeja, B. A., Trzaskowska, P. A., Kuźminska, A., Ciach, T. 2016. Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization. Open Chemistry. 14(1): 206–214.
Catto, V., Farè, S., Cattaneo, I., Figliuzzi, M., Alessandrino, A., Freddi, G., Remuzzic, A., Tanzi, M. C. 2015. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Materials Science and Engineering: C. 54(1): 101-111.
Caves, J. M., Kumar, V. A., Martinez, A. W., Kim, J., Ripberger, C. M., Haller, C. A., Chaikof, E. L. 2010. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials. 31(27): 7175-7182.
Chan, B. P., Leong, K. W. 2008. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Europian Spine Journal. 17(Suppl 4): 467–479.
Chateleta, C., Damourb, O., Domard, A., 2001. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 22(3): 261-268.
Chen, J. P., Su, C. H. 2011. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia. 7(1): 234–243.
Chen, P.-H., Liao, H.-C., Hsu, S.-H., Chen, R.-S., Wu, M.-C., Yang, Y.-F., Wu, C.-C., Chen, M.-H., Su, W.-F. 2015. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Advances. 5(9): 6932–6939
Detta, N., Errico, C., Dinucci, D., Puppi, D., Clarke, D. A., Reilly, G. C., Chiellini, F. 2010. Novel electrospun polyurethane/ gelatin composite meshes for vascular grafts. Journal of Materials Science: Materials in Medicine 21(5): 1761–1769.
Duconseille, A., Astruc, T., Quintana, N., Meersman, F., Lhoutellier, V. S. 2015 Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids. 43: 360–376.
Elomaa, L., Yang, Y. P. 2017. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. Tissue Engineering Part B: Reviews. 23(5): 436–450.
Farris, S., Song, J., Huang, Q. 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry. 58(2): 998–1003.
Ferreira, P., Alves, P., Coimbra, P., Gil, M. H. 2015. Improving polymeric surfaces for biomedical applications: a review. Journal of Coatings Technology and Research. 12: 463–475.
Goonoo, N., Bhaw-Luximon, A., Bowlin, G. L., Jhurry, D. 2013. An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polymer International. 62(4): 523–533.
Han, J., Lazarovici, P., Pomerantz, C., Chen, X., Wei, Y., Lelkes, P. I. 2011. Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules. 12(2): 399–408.
Hasan A, Memic A, Annabi N, Hossain, M., Paula, A., Dokmecia, M. R., Dehghani, F., Khademhosseini, A. 2014. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia. 10(1): 11–25.
Hashizume, R., Hong, Y., Takanari, K., Fujimoto, K. L., Tobita, K., Wagner, W. R. 2013. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials. 34(30): 7353-7363.
He, K., Wang, X. 2011. Rapid prototyping of tubular polyurethane and cell/hydrogel constructs. Journal of Bioactive and Compatible Polymers. 26(4): 363–374.
He, W., Hu, Z., Xu, A., Liu, R., Yin, H., Wang, J., Wang, S. 2013. The preparation and performance of a new polyurethane vascular prosthesis. Cell Biochemistry and Biophysics. 66(3): 855–66.
Hou, L., Peck, Y., Wang, X., Wang, D. 2014. Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity. Science China Chemistry. 57(4): 596–604.
Howard, G. T. 2002. Biodegradation of polyurethane: A review. International Biodeterioration & Biodegradation. 49(4): 245–252.
Huang, Y. Y., Kuo, W. T., Huang, H. Y., Chou, M. J., Wu, M. C., Huang, Y. Y. 2011. Surface modification of gelatin nanoparticles with polyethylenimine as gene vector. Journal of Nanomaterials. 2011: 646538.
Jalaja, K., James, N. R. 2015. Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules. 73: 270–278.
Junter, G. A., Thébault, P., Lebrun, L. 2016. Polysaccharide-based antibiofilm surfaces. Acta Biomaterialia. 30(1): 13–25.
Kucińska-Lipka, J., Gubańska, I., Janik, H. 2013. Gelatin-modified polyurethanes for soft tissue scaffold. The Scientific World Journal. 2013(450132): 1-12.
Kucińska-Lipka, J., Gubańska, I., Janik, H. 2014. Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin,polyurethane/starch, polyurethane/cellulose. Polimery. 59(3): 195–276.
Li, M., Guo, Y., Wei, Y., MacDiarmid, A. G., Lelkes, P. I. 2006. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials. 27(13): 2705–2715.
Li, S., Sengupta, D., Chien, S. 2014. Vascular tissue engineering: From in vitro to in situ. WIREs System Biologyand Medicine. 6(1): 61–76.
Lin, W. C., Yu, D. G., Yang, M. C. 2005. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces. 44(2-3): 82–92.
Liu. Y., Chan-Park, M. B. 2009. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 30(2): 196–207.
Losi, P., Mancuso, L., Al Kayal, T., Celi, S., Briganti, E., Gualerzi, A., Volpi, S., Cao, G., Soldani, G. 2015. Development of a gelatin-based polyurethane vascular graft by spray, phase-inversion technology. Biomed Mater 10(4): 045014.
Ma, P. X. 2008. Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews. 60(2): 184–198.
Ma, Z., Mao, Z., Gao, C. 2007. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces. 60(2): 137–157.
Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, A. P., Neves, N. M., Reis, R. L. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of The Royal Society Interface. 4(17): 999–1030.
McKenna, K. A., Hinds, M. T., Sarao, R. C., Wu, P. C., Maslen, C. L., Glanville, R. W., Babcock, D., Gregorya, K. W. 2012. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomaterialia. 8(1): 225–233.
Meyers, S. R., Grinstaff, M. W. 2012. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chemical Reviews. 112(3): 1615–1632.
Mironov, V., Kasyanov, V., Shu, X. Z., Eisenberg, C., Eisenberg, L., Gonda, S., Trusk, T., Markwald, R. R., Prestwich, W. W. 2005. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials. 26(36): 7628–7635.
Nagiah, N., Johnson, R., Anderson, R., Elliiott, W., Tan, W. 2015 Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Langmuir. 31(47): 12993–13002.
Park, S., Hwang, S., Lee, J. 2011. PH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying. Chemical Engineering Journal. 169(1-3): 348–357.
Patel, H. N., Thai, K. N., Chowdhury, S., Singh, R., Vohra, Y. K., Thomas, T. 2015. In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft. Progress in Biomaterial. 4(2-4): 67–76.
Pezzoli, D., Cauli, E., Chevallier, P., Farè, S., Mantovani, D. 2017. Biomimetic coating of crossâ€linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research Part A. 105(9): 2405-2415.
Pierce, W. S., Branch, S., Insti, N. H. 1968. Segmented Polyurethane : A Polyether Polymer. Journal of Biomedical Material Research. 2(1): 121–130.
Punnakitikashem, P., Truong, D., Menon, J. U., Nguyen, K. T., Hong, Y. 2014 Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomaterialia. 10(11): 4618–4628.
Qi, P., Maitz, M. F., Huang, N. 2013. Surface modification of cardiovascular materials and implants. Surface and Coatings Technology. 233(October): 80–90.
Qi, P., Yang, Y., Maitz, F. M., Huang, N. 2013. Current status of research and application in vascular stents. Chinese Science Bulletine. 58(35): 4362–4370.
Rabotyagova, O. S., Cebe, P., Kaplan, D. L. 2008. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Materials Science and Engineering: C. 28(8): 1420–1429.
Ravi, S., Chaikof, E. 2010. Biomaterials for vascular tissue engineering. Regenerative Medicine. 5(1): 107–120.
Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., Lif , W. 2015. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. 44(15): 5680-5742.
Rhodes, J. M., Simons, M. 2007. The extracellular matrix and blood vessel formation: not just a scaffold. Journal of Cellular and Molecular Medicine. 11(2): 176–205.
Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., Breuer, C. K. 2014. In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews. 20(6): 628–640.
Saber, M. M. 2019. Strategies for surface modification of gelatin-based nanoparticles. Colloids and Surfaces B: Biointerfaces. 183(1): 110407.
Salehi, M., Nosar, M. N., Barough, S. E., Nourani, M., Khojasteh, A., Farzamfar, S., Mansouri, K., Ai, J. 2017. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cellular and Molecular Neurobiology. 38(3): 703-713.
Sartori, S., Rechichi, A., Vozzi, G., D’Acunto, M., Heine, E., Giusti, P., Ciardelli, G. 2008. Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers. Reactive and Functional Polymers. 63(3): 809-821.
Saucedo-Rivalcoba, V., MartÃnez-Hernández, A. L., MartÃnez-Barrera, G., Velasco-Santos, C., Castaño, V. M. 2011. Chicken feathers keratin)/polyurethane membranes. Applied Physics A. 104(1): 219–228.
Seal, B. 2001. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports. 34(4-5): 147–230.
Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., Bowlin, G. L. 2009. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews. 61(12):1007–1019.
Sgarioto, M., Adhikari, R., Gunatillake, P. A., Moore, T., Patterson, J., Nagel, M. D., Malherbe, F. 2015. High modulus biodegradable polyurethanes for vascular stents: evaluation of accelerated in vitro degradation and cell viability of degradation products. Frontiers in Bioengineering and Biotechnology. 3(May): 1-13.
Sharifpoor, S., Simmons, C. A., Labow, R. S., Santerre, J. P. 2011 Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials. 32(21): 4816–4829.
Shin, H., Jo, S., Mikos, A. G. 2003. Biomimetic materials for tissue engineering. Biomaterials. 24(24): 4353–4364.
Shoichet, M. S. 2010. Polymer scaffolds for biomaterials applications. Macromolecu les. 43(2): 581–591.
Singh, S., Rao, K. V. R., Venugopal, K., Manikandan, R. 2002. Alteration in Dissolution Characteristics of Gelatin-Containing Formulations A Review of the Problem, Test Methods, and Solutions. Pharmaceutical Technology. 23: 36–58.
Singha, K., Singha, M. 2012. Cardio Vascular Grafts: Existing Problems and Proposed Solutions. International Journal of Agricultural and Biological Engineering 2(2): 1–8.
Stoppel, W. L., Ghezzi, C. E., McNamara, S. L., Black III, L. D., Kaplan, D. L. 2014. Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. 43(2015): 657-680.
Tan, D., Liu, L., Li, Z., Fu, Q. 2015. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. Journal of Biomedical Research. 103(8): 2711-2719.
Thakur, V. K., Thakur, M. K. 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers. 109:102–117.
Thottappillil, N., Nair, P. D. 2015. Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management. 11(2015): 79–91.
Torricelli P, Gioffrè M, Fiorani A, Panzavolta, S., Gualandi, C., Fini, M., Focarete, M. L., Bigi, A. 2014. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering: C. 36(1): 130–138.
Wang, H., Feng, Y., Behl, M., Lendlein , A., Zhao, H., Xiao, R., Lu, J., Zhang, L., Guo, J. 2011. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Frontiers of Chemical Science and Engineering. 5(3): 392–400.
Wang, H., Feng, Y., Zhao, H., Xiao, R., Lu, J., Zhang, L., Guo, J. 2012. Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromolecular Research. 20(4): 347-350.
Wang, X., He, K., Zhang, W. 2013. Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane–cell/hydrogel construct. Journal of Bioactive and Compatible Polymers. 28(4): 303-319.
Wong, C. S., Liu, X., Xu, Z., Lin, T., Wang, X. 2013. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. Journal of Materials Science: Materials in Medicine. 24(8): 1865–1874.
Xiong, G. M., Yuan, S., Tan, C. K., Wang, J. K., Liu, Y., Tan, T. T. Y., Tan, N. S., Choong, C. 2014. Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces. Journal of Materials Chemistry B. 2(5): 485–493.
Xu, F., Nacker, J. C., Crone, W. C., Masters, K. S. 2008. The haemocompatibility of polyurethane-hyaluronic acid copolymers. Biomaterials. 29(2): 150–160.
Xu, W., Wang, X., Yan, Y., Zhang, R. 2008. A Polyurethane-Gelatin Hybrid Construct for Manufacturing Implantable Bioartificial Livers. Journal of Bioactive and Compatible Polymers. 23(5): 409–422.
Yamamoto, S., Okamoto, H., Haga, M., Shigematsu, K., Miyata, T., Watanabe, T., Ogawa, Y., Takagi, Y., Asakura, T., 2016. Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin. Journal of Material Chemistry B. 4(5): 938–946.
Ye, S. H., Hong, Y., Sakaguchi, H., Shankarraman, V., Luketich, S. K., D’Amore, A., Wagner, W. R. 2014. Nonthrombogenic, Biodegradable Elastomeric Polyurethanes with Variable Sulfobetaine Content. ACS Applied Materials & Interfaces. 6(24): 22796-22806.
Yuan, S., Xiong, G., Roguin, A., Choong, C. 2012. Immobilization of gelatin onto poly(Glycidyl Methacrylate)- grafted polycaprolactone substrates for improved cell-material interactions. Biointerphases. 7(1): 1–12.
Yuan, W., Feng, Y., Wang, H., Yang, D., An, B., Zhang, W., Khan, M., Guo, J. 2013. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C. 33(7): 3644–3651.
Zhan, J., Morsi, Y., Ei-Hamshary, H., Al-Deyab, S. S., Mo, X. 2016. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Frontiers of Materials Science. 10(1): 90–100.
Zhang, K., Liu, T., Li, J. A., Chen, J. Y., Wang, J., Huang, N. 2014. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. Journal of Biomedical Materials Resesearch - Part A. 102(2): 588–609.
Zhang, X., Battiston, K. G., McBane, J. E., Matheson, L. A., Labow, R. S., Santerre, J. P. 2016. Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments. Advances in Polyurethane Biomaterials. 75-114.
Zhou, X., Zhang, T., Guo, D., Gu, N. 2014. A facile preparation of poly(ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 441: 34–42.
Zhu, Y., Gao, C., He, T., Shen, J. 2004. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials. 25(3): 423–430.
Zhu, Y., Gao, C., Shen, J. 2002. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials. 23(24): 4889–4895.
Zia, F., Zia, K. M., Zuber, M., Kamal, S., Aslam, N. 2015. Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers. 134:784–798.
Zia, K. M., Zia, F., Zuber, M., Rehman, S., Ahmad, M. N. 2015. Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules. 79:377–387.
Zuber, M., Zia, F., Zia, K. M., Tabasum, S., Salman, M., Sultan, N. 2015. Collagen based polyurethanes-A review of recent advances and perspective. International Journal of Biological Macromolecules. 80:366–374.
Refbacks
- There are currently no refbacks.