Strategies for Lignin Pretreatment, Decomposition and Modification: A Review

Leta Deressa Tolesa, Ming-Jer Lee

Abstract

The dependency of chemical industry on nonrenewable sources of energy such as petroleum based carbon feedstock is rising dramatically day to day. Nonetheless, global warming caused by greenhouse gas emissions threatens the environment balance and the climate stability. Accordingly, it is necessary to find a renewable resource to decrease the environmental concern, specifically gaseous emissions from fossil fuels and to provide the energy stock. Outstanding to the significance of lignocellulosic biomass as most remedy to the current environmental issues and substituent of nonrenewable source of energy, this review affords understandings about the role of lignin as polymer and raw material for large molecules. In this review article, types of lignin with their extraction methods, fractionation technology to valuable chemicals, modification of the macromolecules to other polymers with tunableproperties, and an extensive range of applications are discussed widely. The major valuable chemicals produced from lignin via chemical depolymerization are also summarized and illustrated with their molecular structures.

Keywords

lignin; extraction; depolymerization; modification

Full Text:

PDF

References

Ahuja, D., Kaushik, A., Chauhan, G. S. 2017. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation. International Journal of Biological Macromolecules. 97: 403-410.

An, Y.-X., Zong, M.-H., Hu, S.-Q., Li, N. 2017. Effect of residual lignins present in cholinium ionic liquid-pretreated rice straw on the enzymatic hydrolysis of cellulose. Chemical Engineering Science. 161: 48-56.

Angelini, S., Ingles, D., Gelosia, M., Cerruti, P., Pompili, E., Scarinzi, G., Cavalaglio, G., Cotana, F., Malinconico, M. 2017. One-pot lignin extraction and modification in γ-valerolactone from steam explosion pre-treated lignocellulosic biomass. Journal of Cleaner Production. 151: 152-162.

Appels, L., Dewil, R. 2012. Biomass valorization to energy and value added chemicals: The future of chemical industry. Resources, Conservation and Recycling. 59: 1-3.

Badgujar, K.C., Bhanage, B.M. 2015. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresource Technology. 178: 2-18.

Basu, S., Omadjela, O., Zimmer, J., Catchmark, J.M. 2017. Impact of plant matrix polysaccharides on cellulose produced by surface-tethered cellulose synthases. Carbohydrate Polymer. 162: 93-99.

Behling, R., Valange, S., Chatel, G. 2016. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? . Green Chemistry. 18(7): 1839-1854.

Boumanchar, I., Chhiti, Y., M'Hamdi Alaoui, F.E., El Ouinani, A., Sahibed-Dine, A., Bentiss, F., Jama, C., Bensitel, M. 2016. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste management. 61: 78-86.

Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry. 15(3): 550.

Calvo-Flores, F.G., Dobado, J.A. 2010. Lignin as renewable raw material. ChemSusChem. 3(11): 1227-1235.

Carneiro, A.P., Rodriguez, O., Macedo, E.A. 2017. Dissolution and fractionation of nut shells in ionic liquids. Bioresource Technology. 227: 188-196.

Chandra, R.P., Chu, Q., Hu, J., Zhong, N., Lin, M., Lee, J.S., Saddler, J. 2016. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresource Technology. 199: 135-141.

Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S. 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technology. 160: 196-206.

Chen, P., Zhang, Q., Shu, R., Xu, Y., Ma, L., Wang, T. 2017. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresource Technology. 226: 125-131.

Chen, W., Yang, H., Chen, Y., Chen, X., Fang, Y., Chen, H. 2016. Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal of Analytical and Applied Pyrolysis. 120: 186-193.

Cox, B.J., Ekerdt, J.G. 2012. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology. 118: 584-588.

Cox, B.J., Jia, S., Zhang, Z.C., Ekerdt, J.G. 2011. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polymer Degradation and Stability. 96(4), 426-431.

Davis, K., Rover, M., Brown, R., Bai, X., Wen, Z., Jarboe, L. 2016. Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies. 9(10): 808.

Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A. 2016. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology. 199: 113-120.

De Gregorio, G. F., Prado, R., Vriamont, C., Erdocia, X., Labidi, J., Hallett, J.P., Welton, T. 2016. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustainble Chemical Engineering. 4(11): 6031-6036.

Deepa, A.K., Dhepe, P.L. 2015. Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catalysis. 5(1): 365-379.

Dong, S.-J., Zhang, B.-X., Gao, Y.-F., Hu, X.-M. 2015. An efficient process for pretreatment of lignocelluloses in functional ionic liquids. International Journal of Biological Macromolecules. 2015, 1-6.

Duval, A., Lawoko, M. 2014. A reviewon lignin-based polymeric, micro-and nano-structured materials. Reactive and Functional Polymers. 85: 78-96.

Erdocia, X., Prado, R., Corcuera, M.Ã., Labidi, J. 2014. Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass and Bioenergy. 66: 379-386.

Fatehi, P., Gao, W., Sun, Y., Dashtban, M. 2016. Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process. Bioresource Technology. 218, 518-525.

Feng, J., Jiang, J., Yang, Z., Su, Q., Wang, K., Xu, J. 2016. Characterization of depolymerized lignin and renewable phenolic compounds from liquefied waste biomass. RSC Advance. 6(98): 95698-95707.

Fernández-Rodríguez, J., Erdocia, X., Sánchez, C., González Alriols, M., Labidi, J. 2017a. Lignin depolymerization for phenolic monomers production by sustainable processes. Journal of Energy Chemistry. 26: 622-631.

Fernández-Rodríguez, J., Gordobil, O., Robles, E., González-Alriols, M., Labidi, J. 2017b. Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. Journal of Cleaner Production. 142: 2609-2617.

Frei, M. 2013. Lignin: Characterization of a multifaceted crop component. The Scientific World Journal. 2013: 436517.

Fu, D., Mazza, G., Tamaki, Y. 2010. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry. 58(5): 2915-2922.

Glas, D., Van Doorslaer, C., Depuydt, D., Liebner, F., Rosenau, T., Binnemans, K., De Vos, D.E. 2015. Solubility in non-imidazolium ionic liquids. Journal of Chemical Technology and Biotechnology. 90(10): 1821-1826.

Goldmann, W.M., Ahola, J., Mikola, M., Tanskanen, J. 2017. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust. Bioresource Technology. 232: 176-182.

Gómez-Fernández, S., Ugarte, L., Calvo-Correas, T., Peña-Rodríguez, C., Corcuera, M.A., Eceiza, A. 2017. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Industrial Crops and Products. 100: 51-64.

González-García, S., Teresa Moreira, M., Artal, G., Maldonado, L., Feijoo, G. 2010. Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. Journal of Cleaner Production. 18(2): 137-145.

Gordobil, O., Delucis, R., Egüés, I., Labidi, J. 2015. Kraft lignin as filler in PLA to improve ductility and thermal properties. Industrial Crops and Products. 72: 46-53.

Gordobil, O., Egüés, I., Labidi, J. 2016. Modification of eucalyptus and spruce organosolv lignins with fatty acids to use as filler in PLA. Reactive and Functional Polymers. 104: 45-52.

Gordobil, O., Herrera, R., Llano-Ponte, R., Labidi, J. 2017. Esterified organosolv lignin as hydrophobic agent for use on wood products. Progress in Organic Coatings. 103: 143-151.

Gordobil, O., Moriana, R., Zhang, L., Labidi, J., Sevastyanova, O. 2016. Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Industrial Crops and Products. 83: 155-165.

Graichen, F.H.M., Grigsby, W.J., Hill, S.J., Raymond, L.G., Sanglard, M., Smith, D.A., Thorlby, G.J., Torr, K.M., Warnes, J.M. 2017. Yes we can make money out of lignin and other bio-based resources. Industrial Crops and Products. 106: 74-85.

Guan, Y., Qi, X.M., Chen, G.G., F. Peng, Sun, R.C. 2016. Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydrate Polymer. 153: 542-548.

Guo, Z., Olsson, L. 2014. Characterization and fermentation of side streams from sulfite pulping. Process Biochemistry. 49(8): 1231-1237.

Güvenatam, B., Heeres, E.H.J., Pidko, E.A., Hensen, E.J.M. 2016: Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catalysis Today. 259: 460-466.

Hart, W.E.S., Harper, J.B., Aldous, L. 2015. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chemistry. 17(1): 214-218.

Hidajat, M.J., Riaz, A., Park, J., Insyani, R., Verma, D., Kim, J. 2017. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chemical Engineering Journal. 317: 9-19.

Hilburg, S.L., Elder, A.N., Chung, H., Ferebee, R.L., Bockstaller, M.R., Washburn, N.R. 2014. A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer. 55(4): 995-1003.

HrnÄiÄ, M.K., Kravanja, G., Knez, Ž. 2016. Hydrothermal treatment of biomass for energy and chemicals. Energy. 116: 1312-1322.

Hu, L., Lin, L., Wu, Z., Zhou, S., Liu, S. 2017. Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renewable and Sustainable. Energy Reviews. 74: 230-257.

Huang, X., Atay, C., Korányi, T.I., Boot, M.D., Hensen, E.J.M. 2015. Role of Cu–Mg–Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catalysis. 5(12): 7359-7370.

Jastrzebski, R., Constant, S., Lancefield, C.-S., Westwood. N.-J., Weckhuysen, B.-M., Bruinjnincx, P.-C.-A. 2016. Tandem catalytic depolymerization of lignin by water-tolerent lewis acids and rhodium complexes. ChemSusChem. 9: 2074-2079.

Jiang, X., Hou, Q., Liu, W., Zhang, H., Qin, Q. 2016. Hemicelluloses removal in autohydrolysis pretreatment enhances the subsequent alkali impregnation effectiveness of poplar sapwood. Bioresource Technology. 222: 361-366.

Jung, S.-J., Kim, S.-H., Chung, I.-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic. Biomass and Bioenergy. 83: 322-327.

Kang, S., Xiao, L., Meng, L., Zhang, X., Sun, R. 2012. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Science. 13(11): 15209-26.

Kassaye, S., Pant, K.K., Jain, S. 2017. Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renewable Energy. 104: 177-184.

Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T. 2016. Base-catalyzed depolymerization of biorefinery lignins. ACS Sustainable Chemical Engineering. 4(3): 1474-1486.

Kim, J.Y., Oh, S., Hwang, H., Cho, T.S., Choi, I.G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere. 93(9): 1755-1764.

Kim, J.-Y., Park, J., Hwang, H., Kim, J.K., Song, I.K., Choi, J.W. 2015. Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. Journal of Analytical Applied Pyrolysis. 113: 99-106.

Kim, J.Y., Shin, E.J., Eom, I.Y., Won, K., Kim, Y.H., Choi, D., Choi, I.G., Choi, J.W. 2011. Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresource Technology. 102(19): 9020-9025.

Kim, M., Son, D., Choi, J.-W., Jae, J., Suh, D.J., Ha, J.-M., Lee, K.-Y. 2017. Production of phenolic hydrocarbons using catalytic depolymerization of empty fruit bunch (EFB)-derived organosolv lignin on Hβ-supported Ru. Chemical Engineering Journal. 309: 187-196.

Kun, D., Pukánszky, B. 2017. Polymer/lignin blends: Interactions, properties and applications. European Polymer Journal. 93, 618-641.

Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Review. 115(21): 11559-11624.

Li, H.Y., Wang, C.Z., Chen, X., Cao, X.F., Sun, S.N., Sun, R.C. 2016. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments. Bioresource Technology. 222: 175-181.

Li, Y., Fan, H., Yu, X., Zhang, S., Li, G., Chin. 2016. Hemicellulose in corn straw: Extracted from alkali solution and produced 5-hydroxymethyl furfural in HCOOH/HCOONa buffer solution. Journal of Chemical Engineering. 24(12): 1786-1792.

Lin, Q., Li, H., Ren, J., Deng, A., Li, W., Liu, C., Sun, R. 2017. Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: optimization by response surface methodology. Carbohydrate Polymer. 157: 214-225.

Liu, F., Liu, Q., Wang, A., Zhang, T. 2016. Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustainable Chemical Engineering. 4(7): 3850-3856.

Long, J., Shu, R., Yuan, Z., Wang, T., Xu, Y., Zhang, X., Zhang, Q., Ma, L. 2015. Efficient valorization of lignin depolymerization products in the present of NixMg1−xO. Applied Energy. 157: 540-545.

Long, J., Xu, Y., Wang, T., Yuan, Z., Shu, R., Zhang, Q., Ma, L. 2015. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appleid Energy. 141: 70-79.

Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla, M.R., Wang, D., Gilbert, E.P., Stokes, J.R., Gidley, M.J. 2017. Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly. Carbohydrate Polymer. 162: 71-81.

Ma, H.-H., Zhang, B.-X., Zhang, P., Li, S., Gao, Y.-F., Hu, X.-M. 2016. An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technology. 148: 138-145.

Ma, J.F., Yang, H.Y., Kun, W., Liu, X.E. 2016. Structural modification of hemicelluloses and lignin based on the biorefinery process with white-rot fungal. Carbohydrate Polymer. 153: 7-13.

Ma, Q., Liu, Q., Li, W., Ma, L., Wang, J., Liu, M., Zhang, Q. 2017. Catalytic depolymerization of lignin for liquefied fuel at mild condition by rare earth metals loading on CNT. Fuel Processing Technology. 161: 220-225.

Mahmood, N., Yuan, Z., Schmidt, J., Xu, C. 2016. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renewable and Sustanable Energy Review. 60: 317-329.

Mahmood, N., Yuan, Z., Schmidt, J., Xu, C.C. 2015. Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents. Bioresource Technology. 190: 416-419.

Mayer A. M., Staples, R. C. 2002. Laccase: new functions for an old enzyme. Phytochemistry. 60: 551–565.

Miazek, K., Remacle, C., Richel, A., Goffin, D. 2017. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresource Technology. 230: 122-131.

Moghaddam, L., Zhang, Z., Wellard, R.M., Bartley, J.P., O'Hara, I.M., Doherty, W.O.S. 2014. Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass and Bioenergy. 70: 498-512.

Mohtar, S.S., Tengku Malim Busu, T.N.Z., Md Noor, A.M., Shaari, N., Mat, H. 2017. An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydrate Polymer. 166: 291-299.

Morgan, H.M., Bu, Q. Jr., Liang, J., Liu, Y., Mao, H., Shi, A., Lei, H., Ruan, R. 2017. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology. 230: 112-121.

Nanayakkara, S., Patti, A.F., Saito, K. 2014. Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustainable Cheming Engineering. 2(9): 2159-2164.

Naron, D.R., Collard, F.X., Tyhoda, L., Görgens, J.F. 2017. Characterisation of lignins from different sources by appriopriate analytical methods: introducing thermogravimetric analysis-thermal desorption-gas chromatography -mass spectroscopy. Industrial Crops and Products. 101: 61-74.

Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., Noreen, A. 2016. Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules. 93: 296-313.

Nasser, R.A., Hiziroglu, S., Abdel-Aal, M.A., Al-Mefarrej, H.A., Shetta, N.D., Aref, I.M. 2015. Measurement of some properties of pulp and paper made from date palm midribs and wheat straw by soda-AQ pulping process. Measurement. 62: 179-186.

Ouyang, X., Ruan, T., Qiu, X. 2016. Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Processing Technology. 144: 181-185.

Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y., Prasertsan, P. 2017. Cellulose and hemicelluloserecovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydrate Polymer. 155: 491-497.

Pandey, M.P., Kim, C.S. 2011. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering and Technology. 34(1): 29-41.

Park, S.-Y., Hong, C.-Y., Jeong, H.-S., Lee, S.-Y., Choi, J.W., Choi, I.-G. 2016. Improvement of lignin oil properties by combination of organic solvents and formic acid during supercritical depolymerization. Journal Analytical and Applied Pyrolysis. 121: 113-120.

Reis, C.L., Silva, L.M., Rodrigues, T.H., Felix, A.K., Santiago-Aguiar, R.S., Canuto, K.M., Rocha, M.V. 2017. Pretreatment of cashew apple bagasse using protic ionic liquids: Enhanced enzymatic hydrolysis. Bioresource Technology. 224: 694-701.

Sailaja, R.R.N., Deepthi, M.V. 2010. Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Materials and Design. 31(9): 4369-4379.

Shen, D., Jin, W., Hu, J., Xiao, R., Luo, K. 2015. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Review. 51: 761-774.

Shen, X.-J., Wang, B., Pan-li, H., Wen, J.-L., Sun, R.-C. 2016. Understanding the structural changes and depolymerization of Eucalyptus lignin under mild conditions in aqueous AlCl3. RSC Advances. 6(51): 45315-45325.

Shi, Y., Yan, X., Li, Q., Wang, X., liu, M., Xie, S., Chai, L., Yuan, J. 2017. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochemistry. 52: 238-242.

Shu, R., Long, J., Yuan, Z., Zhang, Q., Wang, T., Wang, C., Ma, L. 2015. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. Bioresource Technology. 179: 84-90.

Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng, L., Tu, Y. 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource Technology. 183: 248-254.

Singh, S.K., Dhepe, P.L. 2016. Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR. Green Chemistry. 18(14): 4098-4108.

Singh, S.K., Nandeshwar, K., Ekhe, J.D. 2016. Thermochemical lignin depolymerization and conversion to aromatics in subcritical methanol: effects of catalytic conditions. New Journal Chemistry. 40(4): 3677-3685.

Sivasankarapillai, G., McDonald, A.G. 2011. Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems. Biomass and Bioenergy. 35(2): 919-931.

Sobhana, S. S. L., Zhang, X., Kesavan, L., Liias, P., Fardim, P. 2017. Layered double hydroxide interfaced stearic acid – Cellulose fibres: a new class of super-hydrophobic hybrid materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 522, 416-424.

Spiridon, I., Leluk, K., Resmerita, A.M., Darie, R.N. 2015. Evaluation of PLA-ligninbioplastics properties before and after accelerated weather. Composite Part B. Engineering. 69: 342-349.

Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D. 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry. 11(5), 646-655.

Sun, Y.-C., Xu, J.-K., Xu, F., Sun, R.-C. 2013. Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Industrial Crops and Products. 47: 277-285.

Taflick, T., Schwendler, L.A., Rosa, S.M., Bica, C.I., Nachtigall, S.M. 2017. Cellulose nanocrystals from acacia bark-Influence of solvent extraction. International Journal of Biological Macromolecules. 101: 553-561.

Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S.., Patti, A.F., Pringle, J.M., Scott, J.L. 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chemistry. 11(3): 339.

Tarasov, D., Leitch, M., Fatehi, P. 2017. Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Processing Technology. 158: 146-153.

To, T.Q., Shah, K., Tremain, P., Simmons, B.A., Moghtaderi, B., Atkin, R. 2017. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel. 202: 296-306.

Toledano, A., Serrano, L., Labidi, J. 2014. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel. 116, 617-624.

Uzun, H., Yildiz, Z., Goldfarb, J.L., Ceylan, S. 2017. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresource Technology. 234, 122-130.

Vancov, T., Alston, A.-S., Brown, T., McIntosh, S. 2012. Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy. 45: 1-6.

Wahyudiono, M., Sasaki, M., Goto. 2008. Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chemical Engineering and Processing Process Intensification. 47(9-10): 1609-1619.

Wang, Y., Wei, L., Li, K., Ma, Y., Ma, N., Ding, S., Wang, L., Zhao, D., Yan, B., Wan, W., Zhang, Q., Wang, X., Wang, J., Li, H. 2014. Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology. 170: 499-505.

Wanmolee, W., Daorattanachai, P., Laosiripojana, N. 2016. Depolymerization of organosolv lignin to valuable chemicals over homogeneous and heterogeneous acid catalysts. Energy Procedia. 100: 173-177.

Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S. 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Journals of Materials Research and Technology. 4(1): 26-32.

Weerachanchai, P., Lee, J.-M. 2017. Recovery of lignin and ionic liquid by using organic solvents. Journal of Industrial and Engineering Chemistry. 49: 122-132.

Wen, J.-L., Yuan T.-Q., Sun, S.-L., Xu, F., Sun, R.-C. 2014. Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chemistry. 16(1): 181-190.

Wu, Q.-y., Ma, L.-l., Long, J.-x., Shu, R.-y., Zhang, Q., Wang, T.-j., Xu, Y., Chin. 2016. Depolymerization of organosolv lignin over silica-alumina catalysts. The Journal of Chemical Physics. 29(4): 474-480.

Xu, C., Arancon, R.A., Labidi, J., Luque, R. 2014. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chemical Society Review. 43(22): 7485-7500.

Xu, J., Hou, H., Liu, B., Hu, J. 2017. The intergration of different pretreatments and ionic liquid processing of ecalyptus Hemicellulosic products and regenerated cellulose fibers. Industrial Crops and Products. 101: 11-20.

Xu, J., Liu, B., Hou, H., Hu, J. 2017. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery. Bioresource Technology. 234: 406-414.

Yan, B., Li, K., Wei, L., Ma, Y., Shao, G., Zhao, D., Wan, W., Song, L. 2015. Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology. 196: 509-517.

Yan, K., Yang, Y., Chai, J., Lu, Y. 2015. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Applied Catalysis B. Environmental. 179: 292-304.

Yang, L., Wang, D., Zhou, D., Zhang, Y., Yang, T. 2017. Isolation and further structural characterization of lignins from the valonea of Quercus variabilis. International Journal of Biological Macromolecules. 97: 164-172.

Zhang, H., Wu, S., Xie, J. 2017. Evaluation of the effects of isolated ligninon enzymatic hydrolysis of cellulose. Enzyme Microbial Technology. 101: 44-50.

Zhang, Z., Song, J., Han, B. 2016. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Review. 117: 6834-6880.

Zhao, C., Lercher, J.A. 2013. Catalytic Depolymerization and Deoxygenation of Lignin, Chap. 9, in the book of The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, Ed. by K.S. Triantafyllidis, Lappas, A.A., Stocker M. 289-320.

Zhao, X., Tong, T., Li, H., Lu, H., Ren, J., Zhang, A., Deng, X., Chen, X., Wu, A.M. 2017. Characterization of hemicelluloses from Neolamarckia cadamba (Rubiaceae) during xylogenesis. Carbohydrate Polymer. 156: 333-339.

Refbacks

  • There are currently no refbacks.