Optimization of Bioethanol Synthesis from Durian Seeds Using Saccharomyces Cerevisiae in Fermentation Process

Masturi Masturi, Dante Alighiri, Pratiwi Dwijananti, Rahmat Doni Widodo, Saraswati Putri Budiyanto, Apriliana Drastisianti

Abstract

Bioethanol is an alternative energy of environmentally friendly as a substitute for petroleum. Sucrose, starch, and fibrous cellulose (lignocellulose) are the main ingredients for bioethanol production. The material is very easy and abundant to get from the waste of agricultural crops. One of these agricultural wastes in Indonesia that have not been used optimally is durian seeds. Durian seeds only become waste and are not commercially useful, even though they contain high carbohydrates, which is possible as a potential new source for bioethanol production. In this work, an experimental study was conducted on bioethanol synthesis from durian seeds through fermentation by Saccharomyces cerevisiae yeast in aerobic fermenter. The process for the production of starch-based bioethanol includes milling, hydrolysis, detoxification, fermentation, and distillation. At the stage of fermentation, variations in the duration of fermentation were applied for 1-11 days. Carbohydrates contained in durian seed flour are 11.541%, which is the largest content. The highest result of ethanol content is 14.72 % (v/v) in 9 day fermentation periods by using Saccharomyces cerevisiae in aerobic conditions. Distillation to enrich bioethanol was carried out by batch vacuum distillation at 68°C for ± 180 minutes and produced bioethanol with a purity of 95%.

Keywords

Bioethanol; Durian seeds; Fermentation; Saccharomyces cerevisiae

Full Text:

PDF

References

Alegre, R. M., Rigo, M., Joekes, I. 2003. Ethanol Fermentation of a Diluted Molasses Medium by Saccharomyces cerevisiae Immobilized on Chrysotile. Brazilian Archives of Biology and Technology An International Journal. 46 (4): 751–757.

Alighiri, D., Eden, WT, Cahyono, E., Supardi, K. I. 2018. Quality Improvement By Batch Vacuum Distillation and Physicochemical Characterization of Clove Leaf Oil in Central Java, Indonesia. Journal of Physics: Conf. Series. 983: 012163

Alighiri, D., Wardani, S., Harjito. 2015. Sintesis Selulosa Asetat Dari Jerami Padi Sebagai Upaya Penanggulangan Limbah Pertanian. Proceeding Seminar Nasional Kimia dan Pendidikan Kimia SNKPK 2015. 1: 28–32.

Amid, B. T., Mirhosseini, H. 2012. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus) Seed. Molecules. 17(9): 10875–10892.

Arlofa, N., Gozan, M., Pradita, T., Jufri, M. 2019. Optimization of Bioethanol Production from Durian Skin by Encapsulation of Saccharomyces cerevisiae. Asian Journal of Chemistry. 31(5): 1027–1033.

Azhar, S. H. M., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J. A., Faik, A. A. M. K., Rodrigues, F. 2017. Yeasts in Sustainable Bioethanol Production: A Review. Biochemistry Biophysics Reproduction 10: 52–61.

Carrasco, C., Baudel, H., Peñarrieta, M., Solano, C., Tejeda, L., Roslander, C., Galbe, M., Lidén, G. 2011. Steam Pretreatment and Fermentation of The Straw Material “Paja Brava†Using Simultaneous Saccharification and Co-Fermentation. Journal of Bioscience and Bioengineering. 111(2): 167–174.

Carvalho, A. L., Antunes C. H., Freire F. 2016. Economic-Energy-Environment Analysis of Prospective Sugarcane Bioethanol Production in Brazil. Applied Energy. 181: 514–526.

Cui, L., Dong, S., Zhang, J. & Liu, P. 2014. Starch Granule Size Distribution and Morphogenesis in Maize (Zea mays L.) Grains with Different Endosperm Types. Australian Journal of Crop Science, 8(11): 1560–1565.

Czarnecki, M. A., Morisawa, Y., Futami, Y., Ozaki, Y. 2015. Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy. Chemical Reviews. 115(18): 9707–9744.

Datta, P., Tiwari, S., Pandey, L. M. 2017. Bioethanol Production from Waste Breads Using Saccharomyces cerevisiae. S.K. Ghosh (ed.), Utilization and Management of Bioresources. Springer Nature. Singapore. 125–134.

De Klerk, C., Fosso-Kankeu, E., Du Plessis, L., Marx, S. 2018. Assessment of The Viability of Saccharomyces cerevisiae in Response to Synergetic Inhibition During Bioethanol Production. Current Science 115:1124–1132.

Devarapalli, M., Atiyeh, H. K. 2015. Review Paper: A Review of Conversion Processes For Bioethanol Production With A Focus On Syngas Fermentation. Biofuel Research Journal. 7: 268–280.

Dutta, K., Daverey, A., Lin, J. 2014. Evolution Retrospective for Alternative Fuels: First to Fourth Generation. Renewable Energy. 69: 114–122.

El-Mekkawi, S. A., Abdo, S. M., Samhan, F. A., Ali, G. H. 2019. Optimization of Some Fermentation Conditions For Bioethanol Production From Microalgae Using Response Surface Method. Bulletin of the National Research Centre. 43(1): 164–172.

Faridah, D. H., Fardiaz, D., Andarwulan, A., Sunarti, T. C. 2010. Structure Changes of Arrowroot (Maranta arundinaceae) Starch as Influenced by Acid Hydrolysis, Debranching and Autoclaving-Cooling Cycle Modifications. Jurnal Teknologi dan Industri Pangan. XXI(2): 135–142.

Fatimah, B., Abubakar, G., Aliyu. S. 2013. Analysis of Biochemical Composition of Honey Samples from North-East Nigeria. Biochemistry & Analytical Biochemistry. 2(3): 1000139.

Gilbert, A.S. 2017. Encyclopedia of Spectroscopy and Spectrometry: Vibrational, Rotational and Raman Spectroscopy, Historical Perspective. Elsevier. Amsterdam, NY, USA. 600–609.

Han, M., Kang, K.E., Kim, Y., Choi, G.-W. 2013. High Efficiency Bioethanol Production From Barley Straw Using A Continuous Pretreatment Reactor. Process Biochemistry. 48 (3): 488–495.

Hoover, R. 2000. Acid-Treated Starches. Food Reviews International. 16(3): 369 –392.

Jyothi, A. N., Moorthy, S. N., Rajasekharan, K. N. 2006. Effect of Cross-Linking with Epichlorohydrin on The Properties of Cassava (Manihot esculenta Crantz) starch. Starch/Staerke. 58(6): 292–299.

Kang, A., Lee, T. S. 2015. Converting Sugars to Biofuels: Ethanol and Beyond. Bioengineering (Basel). 2(4): 184–203.

Karimi, K., Emtiazi, G., Taherzadeh, M. J. 2006. Ethanol Production from Dilute-acid Pretreated Rice Straw by Simultaneous Saccharification and Fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology. 40: 138–144.

Khattab, S. M. R., Kodaki, T. 2014. Efficient Bioethanol Production by Overexpression of Endogenous Saccharomyces cerevisiae Xylulokinase and NADPH-Dependent Aldose Reductase with Mutated Strictly NADP+-dependent Pichia stipitis Xylitol Dehydrogenase. Process Biochemistry. 49 (11): 1838–1842.

Kizil, R., Irudayaraj, J., Seetharaman, K. 2002. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy Journal of Agricultural and Food Chemistry.50: 3912–3920.

Liu, C., Luo, G., Wang, W., He, Y., Zhang, R., Liu, G. 2018. The Effects of pH and Temperature on The Acetate Production and Microbial Community Compositions by Syngas Fermentation. Fuel. 224:537–544.

Maryam, K. A., Santosa. 2016. Utilization Starch of Avocado Seed (Persea Americana Mill.) As A Raw Material for Dextrin. Journal of Food Science and Engineering. 6: 32–7.

Marzo, C., Díaz, A.B., Caro, I., Blandino, A., 2019. Status and Perspectives in Bioethanol Production From Sugar Beet. Ray, R. C., Ramachandran, S. (Eds.), Bioethanol Production from Food Crops. Academic Press. Massachusetts, US. 61–79.

Masturi, Cristina, A., Istiana, N., Dwijananti, P. 2017. Ethanol Production from Fermentation of Arum Manis Mango Seeds (Mangifera Indica L.) Using Saccharomyces cerevisiae. Jurnal Bahan Alam Terbarukan. 6(1): 56–60.

Max, J.-J., Chapados, C. 2007. Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A. 111(14): 2679–2689.

Monir, M. U., Abd Aziz, A., Yousuf, A., Alam, M. Z. 2019. Hydrogen-Rich Syngas Fermentation For Bioethanol Production Using Sacharomyces cerevisiae. International Journal of Hydrogen Energy. XX: 1–9.

Movasaghi, Z., Rehman, S., Rehman, I. U. 2008. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Review. 43: 134–79.

Oh, E. V. N., Wei, N., Kwak, S., Kim, H., Jin, Y.–S. 2019. Overexpression of RCK1 Improves Acetic Acid Tolerance in Saccharomyces cerevisiae. Journal of Biotechnology. 292: 1–4.

Parapouli, M., Vasileiadis, A. Afendra, A.-S., Hatziloukas, E. 2020. Saccharomyces cerevisiae and Its Industrial Applications. AIMS Microbiology. 6(1): 1–31.

Park, S. W., Lee, S. J., Sim, Y. S., Choi, J. Y., Park, E. Y., & Noh, B. S. 2017. Analysis of Ethanol in Soy Sauce Using Electronic Nose For Halal Food Certification. Food Science and Biotechnology. 26(2): 311–317.

Paulová, L., Patáková, P., Brányik, T. 2013. Advanced Fermentation Processes. J. Teixeira & A.A. Vincente, ed., Engineering Aspects of Food Biotechnology. Taylor & Francis Group. London. 89–110.

Pavlovic, S., & Brandao, P. R. 2003. Adsorption of Starch, Amylose, Amylopectin and Glucose Monomer and Their Effect on The Flotation of Hematite and Quartz. Minerals Engineering. 16(11): 1117–1122.

Robak, K., Balcerek, M. 2018. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol Biotechnology. 56(2): 174–187.

Rohman, I., Sonjaya, Y., Priyanka, P. C. 2013. Performa Adsorben SG dan KS dalam Pemurnian Bioetanol Hasil Fermentasi Singkong. Jurnal Sains dan Teknologi Kimia. 4(2): 147–158.

Rouhollah, H., Iraj, N., Giti, E., Sorah, A. 2007. Mixed Sugar Fermentation by Pichia stipitis, Saccharomyces cerevisiae, and An Isolated Xylose Fermenting Kluyveromyces marxianus and Their Cocultures. African Journal of Biotechnology. 6 (9): 1110–1114.

Salsabila, U., Mardiana, D., Indahyanti, E. 2013. Kinetika Reaksi Fermentasi Glukosa Hasil Hidrolisis Pati Biji Durian Menjadi Etanol. Jurnal Ilmu Kimia Universitas Brawijaya. 2(1): 331–337.

Sebayang, F. 2006. Pembuatan Etanol dari Molase Secara Fermentasi Menggunakan Sel Saccharomyces cerevisiae yang Terimobilisasi pada Kalsium Alginat. Jurnal Teknologi Proses. 5(2): 75–80.

Siburian, R. R., Ahmad, A., Muria, S. R. 2015. Pengaruh Waktu Inokulasi Inokulum dalam Pembuatan Bioetanol dari Pelepah Sawit Menggunakan Saccharomyces cerevisiae. Jurnal Online Mahasiswa Fakultas Teknik. 2(2): 1–7.

Sims, R. E. H., Mabee, W., Saddler, J. N., Taylor, M. 2009. An Overview of Second Generation Biofuel Technologies. Bioresource Technology. 101:1570–80.

Sudhaker, S., Jain, R. 2016. Effect of using Propanol as internal standard on quantitative determination of ethanol in different biological matrices by head space-Gas Chromatography-Flame Ionization Detector. Madridge Journal of Analytical Sciences and Instrumentation. 1(1): 1000101.

Szambelan, K., Nowak, J., Szwengiel, A., JeleÅ„, H., Åukaszewski, G., 2018. Separate Hydrolysis and Fermentation and Simultaneous Saccharification and fermentation Methods in Bioethanol Production and Formation of Volatile By-Products from Selected Corn Cultivars. India Crops Production. 118: 355–361.

Toikka, M. A., Tsvetov, N. S., Toikka, A. M. 2011. Splitting of The Liquid Solution and The Compositions of Liquid Phases In The Water-n-Propanol-n-Propyl Acetate System At 293.15, 303.15, and 313.15 K. Theoretical Foundations of Chemical Engineering. 45(4): 429–435.

Tri, D. Nuri, W. 2011. Pembuatan Bioetanol dari Kulit Pisang. Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia, Jurusan Teknik Kimia FTI UPN. Yogyakarta, Indonesia.

Trivedi, N., Mandavgane, S. A., Mehetre, S., Kulkarni, B. D. 2016. Characterization and Valorization of Biomass Ashes. Springer Berlin Heidelberg. India.

Wang, S., Li, C., Copeland, L., Niu, Q., Wang, S. 2015. Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety. 14(5): 568–585.

Yingling, Y., Zongcheng, Y., Honglin, W., Li, C. 2011. Optimization of Bioethanol Production During Simultaneous Saccharification and Fermentation In Very Highgravity Cassava Mash. Antonie Leeuwenhoek. 99: 329–339.

Zambare, V. P., Bhalla, A., Muthukumarappan, K., Sani, R. K., Christopher, L. P. 2011. Bioprocessing of Agricultural Residues to Ethanol Utilizing A Cellulolytic Extremophile. Extremophiles. 15(5): 611–618.

Refbacks

  • There are currently no refbacks.