Effect of Ultrasonic Assisted on The Degree of Deacetylation of Chitosan Extracted from Portunus Pelagicus

Buanasari Buanasari, Warlan Sugiyo, Heri Rustaman

Abstract

The technology for extracting chitin from shell and other materials needs to be continuously improved, including its conversion to chitosan. Chitosan is a biocompatible polymer, biodegradable, non-toxic, water-soluble at pH below 6.5, and it has protonated amino groups. The benefits of chitosan in industry, food and medicine make it necessary to fully study an efficient chitosan synthesis method and the results can be applied on an industrial scale. This study examined the effect of ultrasonic-assisted in increasing the degree of deacetylation of chitosan produced from Portunus pelagicus shell waste. The production process of chitosan goes through the stages of deproteination, demineralization and deacetylation. All these steps are ultrasound assisted processes with a frequency of 40 kHz through a digital ultrasonic cleaner. Ultrasonic-assisted chitin and chitosan were examined using FTIR spectrometry. The results showed that the ultrasonic method was able to increase the deacetylation degree of chitin with a value of 68.45±0.11% compared to 62.52±0.08% without ultrasonic. Application of ultrasonic assisted deacetylation gave a deacetylation degree of 85.35 ± 0.20%, higher than without ultrasonic 80.24 ± 0.19%.  Physically, ultrasonic-assisted chitosan is smoother and brighter in color. The ultrasonic-assisted chitosan manufacturing method could increase the deacetylation degree and produce high grade chitosan.

Keywords

Chitin; Chitosan; Portunus pelagicus; ultrasonic deacetylation; ultrasonic demineralization; ultrasonic deproteination

Full Text:

PDF

References

Abiraman, T., Ramanathan, E., Kavitha, G., Rengasamy, R., Balasubramanian, S. 2017. Synthesis of chitosan capped copper oxide nanoleaves using high intensity (30 kHz) ultrasound sonication and their application in antifouling coatings. Ultrasonics Sonochemistry. 34: 781–791.

Anbinder, P. S., Deladino, L., Navarro, A. S., Amalvy, J. I., Martino, M. N. 2011. Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers. Journal of Encapsulation and Adsorption Sciences. 01(04): 80–87.

Behrouz, S., Soltani Rad, M. N., Piltan, M. A. 2018. Ultrasound promoted rapid and green synthesis of thiiranes from epoxides in water catalyzed by chitosan-silica sulfate nano hybrid (CSSNH) as a green, novel and highly proficient heterogeneous nano catalyst. Ultrasonics Sonochemistry. 40: 517–526.

Birolli, W. G., Delezuk, J. A. de M., Campana-Filho, S. P. 2016. Ultrasound-assisted conversion of alpha-chitin into chitosan. Applied Acoustics: 103: 239–242.

Buanasari, B., Sugiyo, W., Fitriani, N., Suryaningsih, S. 2019. Potential of Chitosan From Local Crab (Portunus Pelagicus) to Enhance Storability of Musa Paradisiaca L. Jurnal Bahan Alam Terbarukan. 8(1): 41–46.

Cheung, R., Ng, T., Wong, J., Chan, W. 2015. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Marine Drugs. 13(8): 5156–5186.

Cravotto, G., Tagliapietra, S., Robaldo, B., Trotta, M. 2005. Chemical modification of chitosan under high-intensity ultrasound. Ultrasonics Sonochemistry. 12(1–2): 95–98.

Fiamingo, A., Delezuk, J. A. de M., Trombotto, S., David, L., Campana-Filho, S. P. 2016. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrasonics Sonochemistry. 32: 79–85.

Guzmán, K., Kumar, B., Vallejo, M. J., Grijalva, M., Debut, A., Cumbal, L. 2019. Ultrasound-assisted synthesis and antibacterial activity of gallic acid-chitosan modified silver nanoparticles. Progress in Organic Coatings. 129: 229–235.

Karadeniz, F., Kim, S.-K. 2014. Antidiabetic Activities of Chitosan and Its Derivatives. Food and Nutrition Research. 73: 33–44.

Kjartansson, G. T., Zivanovic, S., Kristbergsson, K., Weiss, J. 2006. Sonication-Assisted Extraction of Chitin from Shells of Fresh Water Prawns (Macrobrachium rosenbergii). Journal of Agricultural and Food Chemistry. 54(9): 3317–3323.

Kong, M., Chen, X. G., Xing, K., Park, H. J. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology. 144(1): 51–63.

Kritchenkov, A. S., Egorov, A. R., Volkova, O. V., Kritchenkov, I. S., Kurliuk, A. V., Shakola, T. V., Khrustalev, V. N. 2019. Ultrasound-assisted catalyst-free phenol-yne reaction for the synthesis of new water-soluble chitosan derivatives and their nanoparticles with enhanced antibacterial properties. International Journal of Biological Macromolecules. 139:103–113.

Lu, Y., Sun, Q., She, X., Xia, Y., Liu, Y., Li, J., Yang, D. 2013. Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydrate Polymers. 98(2): 1497–1504.

Mohammed, M. H., Williams, P. A., Tverezovskaya, O. 2013. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids. 31(2): 166–171.

Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., de la Caba, K. 2017. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules. 105: 1358–1368.

Muzzarelli, R. A. A. 1973. Natural chelating polymers: Alginic acid, chitin, and chitosan (1st ed.). Pergamon Press.

Nouri, M., Khodaiyan, F., Razavi, S. H., Mousavi, M. A. 2016. The Effect of Different Chemical and Physical Processing on the Physicochemical and Functional Characterization of Chitosan Extracted from Shrimp Waste Species of Indian White Shrimp. Progress in Rubber Plastics and Recycling Technology. 32(1): 39–54.

Philibert, T., Lee, B. H., Fabien, N. 2017. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Applied Biochemistry and Biotechnology. 181(4): 1314–1337.

Raafat, D., Sahl, H.-G. 2009. Chitosan and its antimicrobial potential - a critical literature survey: Chitosan and its antimicrobial potential. Microbial Biotechnology. 2(2): 186–201.

Rahayu, L. H., Purnavita, S. 2017. Optimasi Pembuatan Kitosan Dari Kitin Limbah Cangkang Rajungan (Portunus pelagicus) Untuk Adsorben Ion Logam Merkuri. Reaktor. 11(1): 45.

Raza, Z. A., Khalil, S., Ayub, A., Banat, I. M. 2020. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research. 492: 108004.

Ren, X., Hou, T., Liang, Q., Zhang, X., Hu, D., Xu, B., Chen, X., Chalamaiah, M., Ma, H. 2019. Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chemistry. 279: 223–230.

Roberts, G. A. F. (1992). Chitin chemistry. Macmillan.

Sanna, V., Roggio, A. M., Pala, N., Marceddu, S., Lubinu, G., Mariani, A., Sechi, M. 2015. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol. International Journal of Biological Macromolecules. 72: 531–536.

Sartika, I. D. 2016. Isolasi dan Karakterisasi Kitosan dari Cangkang Rajungan (Portunus pelagicus). Jurnal Biosains Pascasarjana. 18(2): 98.

Shi, X.-Y., Tan, T.-W. 2002. Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of Vitamin D2. Biomaterials. 23(23): 4469–4473.

Tolesa, L. D., Gupta, B. S., Lee, M.-J. 2019. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. International Journal of Biological Macromolecules. 130: 818–826.

Tolve, R., Condelli, N., Caruso, M. C., Genovese, F., Di Renzo, G. C., Mauriello, G., Galgano, F. 2019. Preparation and characterization of microencapsulated phytosterols for the formulation of functional foods: Scale up from laboratory to semi-technical production. Food Research International. 116: 1274–1281.

Trzciński, S., Staszewska, D. U. 2004. Kinetics of ultrasonic degradation and polymerisation degree distribution of sonochemically degraded chitosans. Carbohydrate Polymers. 56(4): 489–498.

Vallejo-Domínguez, D., Rubio-Rosas, E., Aguila-Almanza, E., Hernández-Cocoletzi, H., Ramos-Cassellis, M. E., Luna-Guevara, M. L., Rambabu, K., Manickam, S., Siti Halimatul Munawaroh, H., Loke Show, P. 2021. Ultrasound in the deproteinization process for chitin and chitosan production. Ultrasonics Sonochemistry. 72: 105417.

Wang, J., Jin, X., Chang, D. 2009. Chemical modification of chitosan under high-intensity ultrasound and properties of chitosan derivatives. Carbohydrate Polymers. 78(1): 175–177.

Wei, L., Chen, Y., Tan, W., Li, Q., Gu, G., Dong, F., Guo, Z. 2018. Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives. Molecules. 23(10): 2604.

Yang, M., Wei, Y., Ashokkumar, M., Qin, J., Han, N., Wang, Y. 2020. Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures. Ultrasonics Sonochemistry. 62: 104861.

Younes, I., Rinaudo, M. 2015. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs. 13(3): 1133–1174.

Zhu, L.-F., Li, J.-S., Mai, J., Chang, M.-W. 2019. Ultrasound-assisted synthesis of chitosan from fungal precursors for biomedical applications. Chemical Engineering Journal. 357: 498–507.

Refbacks

  • There are currently no refbacks.