PENGARUH KONSENTRASI BUAH CABAI MERAH (Capsicum annum L.) DAN BUAH CABAI RAWIT (Capsicum frutescens L.) DALAM PRODUKSI BIOGAS DARI SAMPAH ORGANIK
Abstract
Meningkatnya kesejahteraan masyarakat Indonesia berdampak positif bagi peningkatan jumlah pasar tradisional dan komoditas perdagangannya. Namun, permasalahan sampah yang ditimbulkan oleh kegiatan perdagangan tersebut masih belum dapat ditangani dengan baik. Tidak hanya itu, sampah pasar tradisional yang hanya ditimbun di area tempat pembuangan akhir (TPA) telah menyebabkan pencemaran lingkungan berupa kontaminasi air tanah, emisi gas rumah kaca dan masalah kesehatan. Sampah pasar tradisional memiliki potensi yang besar untuk diolah menjadi biogas melalui metode anaerobic digestion. Dengan adanya mikroorganisme, proses ini mampu mendegradasi sampah organik menjadi bahan organik yang stabil dan biogas (metana dan karbondioksida). Salah satu faktor yang mempengaruhi proses tersebut adalah adanya senyawa-senyawa antibiotik yang terkandung dalam sampah. Senyawa capsaicinoid dalam sampah buah cabai merupakan senyawa yang berperan dalam rasa pedas cabai memiliki pengaruh negatif terhadap kinerja mikroorganisme dalam mendegradasi sampah menjadi biogas. Pengaruh konsentrasi buah cabai terhadap produksi biogas ini belum banyak diteliti dan diketahui sehingga perlu dilakukan penelitian untuk menentukan konsentrasi minimal yang menyebabkan proses inhibisi (penghambatan).Hasil penelitian membuktikan adanya pengaruh konsentrasi buah cabai (capsaicinoid) terhadap produksi biogas. Sampah pasar tradisional dengan konsentrasi 8 g VS/liter yang diumpankan terhadap konsorsium mikroorganisme tanpa adanya buah cabai menghasilkan yield biogas yang lebih tinggi dibandingkan dengan sampah yang tercampur buah cabai. Semakin tinggi konsentrasi buah cabai semakin besar pengaruh penghambatannya (inhibition). Hal ini ditunjukkan dengan menurunnya yield biogas yang dihasilkan. Konsentrasi buah cabai yang menghasilkan yield optimal diperoleh pada nilai konsentrasi 5 dan 8 g VS/liter untuk cabai merah dan cabai rawit secara berturut-turut. Yield tertinggi biogas dan gas metana ialah 35 dan 12 ml/g VS (cabai rawit). Persentase reduksi VS relatif cukup tinggi mencapai 75%.
The rising of Indonesian welfare has a positive impact towards the number of traditional market and its commodity. However, the problem of waste as a result of the market activity still not handled properly. Moreover, the waste of traditional market which remains in the landfill resulted in pollution such as groundwater contamination, green house emission and also health problems.The waste of traditional market has a big potential to be processed as biogas through anaerobic digestion method. With the presence of microorganism, this process is capable of degrading organic waste into stable organic material and biogas (methane and carbon dioxyde). One of the factor which affecting the process are the antibiotic components contained by the waste. Capsaicinoid which found in chili is the component which responsible to provide the spicy taste, has a negative effect towards the microorganism in degrading the waste into biogas. The effect of chili towards biogas production is not widely known that needs to be investigated, therefore a research needs to be conducted to determine the minimum concentration which resulted in inhibition process. The research result shows the influence of the concentration of chili (capsaicinoid) towards biogas production. Traditional market waste with 8g VS/litre which exposed to microorganism without the existence of chili reulted in higher amount of biogas than the one which mixed with chili. The bigger the concentration of chili, the bigger the inhibition. This is demonstrated by the the decreasing number of the yield of the biogas. The concentration of chili which can resulted in optimal yield production obtained at concentration value of 5 and 8 g VS/ litre for red chili and cayenne pepper respectively. The highest yield of biogas and methane are 35 and 12 ml/g VS (cayenne pepper). The VS reduction percentage is relatively high to 75%.
Keywords
Full Text:
PDFReferences
Alvarez, R. and G. Lidén (2008). "Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste." Renewable Energy33(4): 726-734.
Boopathy, R. (1987). "Inoculum source for anaerobic fermentation of coffee pulp." Applied Microbiology and Biotechnology26(6): 588-594.
Bouallagui, H., R. Ben Cheikh, et al. (2003). "Mesophilic biogas production from fruit and vegetable waste in a tubular digester." Bioresource Technology86(1): 85-89.
Bouallagui, H., O. Haouari, et al. (2004). "Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste." Process Biochemistry39(12): 2143-2148.
Bouallagui, H., M. Torrijos, et al. (2004). "Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance." Biochemical Engineering Journal21(2): 193-197.
Callaghan, F. J., D. A. J. Wase, et al. (2002). "Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure." Biomass and Bioenergy22(1): 71-77.
Cirne, D. G. (2006). Evaluation of Biological Strategies to Enhance Hydrolysis During Anaerobic Digestion of Complex Waste. Doctor, University of Lund.
D. Deublein, A. S. (2008). Biogas from Waste and Renewable Resources: an Introduction, Weinheim: WIley-VCH Verlag GmbH Co. KGaA.
Dirar, H. A. and H. B. El Amin (1988). "Methane fermentation of water hyacinth: effect of solids concentration and inoculum source." World Journal of Microbiology and Biotechnology4(3): 299-312.
Espinoza-Escalante, F. M., C. Pelayo-Ortíz, et al. (2009). "Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane." Biomass and Bioenergy33(1): 14-20.
Fandiño, I., S. Calsamiglia, et al. (2008). "Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet." Animal Feed Science and Technology145(1): 409-417.
Forster-Carneiro, T., M. Pérez, et al. (2007). "Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources." Bioresource Technology98(17): 3195-3203.
Gavala, H. N., U. Yenal, et al. (2003). "Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature." Water Research37(19): 4561-4572.
Guil-Guerrero, J., C. Martínez-Guirado, et al. (2006). "Nutrient composition and antioxidant activity of 10 pepper (<i>Capsicum annuun</i>) varieties." European Food Research and Technology224(1): 1-9.
Jantsch, G. (2003). Reactor applications and process monitroing for improved anaerobic digestion.
Kaparaju, P. L. N. and J. A. Rintala (2006). "Thermophilic Anaerobic Digestion of Industrial Orange Waste." Environmental Technology27(6): 623-633.
Lee, M., T. Hidaka, et al. (2009). "Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge." Bioresource Technology100(2): 578-585.
Miean, K. H. and S. Mohamed (2001). "Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants." Journal of Agricultural and Food Chemistry49(6): 3106-3112.
Parawira, W. (2004). Anaerobic Treatment of Agricultural Residues and Wastewater. Doctor, Lund University.
S. Calsamiglia, M. B., P.W. Cardozo, L. Castillejos, A. Ferret (2007). "Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation." Journal of Dairy Science90(6): 2580 - 2595.
Seon-Mi Lee, S.-Y. K., Junsso Lee, Kwang-Won Yu, Inseop Chang and Hyung Joo Suh (2008). "Nonpungent Capsicum fermentation by Bacillus subtilis and the addition of Rapidase." Appliad Microbiology and Biotechnology81(2): 257-262.
Topuz, A. and F. Ozdemir (2007). "Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey." Journal of Food Composition and Analysis20(7): 596-602.
Vinayaka KS , N. K., Rakshitna MN, Martis R, SHruthi J, Hedge SV, Kekuda TR, Raghvendra HL (2010). "Proximate Composition, Antibacterial and Anthelmintic Activity of Capsicum frutescens (L.) Var. Longa (Solanaceae) Leaves." Pharmacognosy Journal2(12): 486-491.
Refbacks
- There are currently no refbacks.