Characteristics of Density and Hardness on Caloric Value of Substitution of Biomass and Pet Plastics as Refused Derived Fuel Pellets

Pratiwi Claudia Gaina, Mega Mutiara Sari, I Wayan Koko Suryawan, Wisnu Prayogo, Kuntum Khoiro Ummatin, Qurrotin Ayunina Maulida Okta Arifianti, Niswatun Faria

Abstract

The utilization of biomass and polyethylene terephthalate (PET) waste as raw material for refuse-derived fuel (RDF) has been studied. However, physical such as density and hardness are still not widely used. This study aimed to determine the relationship between variations in the composition of PET and physical garden waste density and hardness on the quality of the caloric value of RDF. Density measurements were carried out with the Ultrapyc 1200e instrument. While for hardness, using the Shore D method. The Shore D Hardness test is a standardized test that involves evaluating the amount of depth that may be penetrated by a certain indentation. The lowest density is RDF pellets for food waste at 1,537 kg/m3 and consists of RDF pellets for plastic waste at 2,560 kg/m3. In line with the density, the hardness value increases with the addition of the PET composition. The density and hardness values in the RDF mixture show a simultaneous relationship to the heating value. The highest caloric value achieved is the use of 100% PET as pellets which can reach 5765 kcal/kg.

Full Text:

PDF

References

Abnisa, F., Wan Daud, W. M. A. 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management. 87: 71–85.

Afifah, A. S., Suryawan, I. W. K., Sarwono, A. 2020. Microalgae production using photo-bioreactor with intermittent aeration for municipal wastewater substrate and nutrient removal. Communications in Science and Technology. 5(2): 107–111.

Bantacut, T., Hendra, D., Nurwigha, R. 2013. The Quality of Biopellet from Combination of Palm Shell Charcoal and Palm Fiber. Jurnal Teknologi Industri Pertanian. 23(1): 1–12.

Crippa, M., Morico, B. 2020. Chapter 12 - PET depolymerization: a novel process for plastic waste chemical recycling. In A. Basile, G. Centi, M. De Falco, & G. B. T.-S. in S. S. and C. Iaquaniello (Eds.). Catalysis, Green Chemistry and Sustainable Energy (Vol. 179, pp. 215–229). Elsevier.

Danish, Wang, Z. 2019. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of The Total Environment. 670: 1075–1083.

Duan, N., Lu, Y., Cheng, Y. P. 2019. Numerical Investigation on Installation Process of Displacement Pile. In 53rd U.S. Rock Mechanics/Geomechanics Symposium (p. ARMA-2019-1697).

Gasim, M. F., Choong, Z.-Y., Koo, P.-L., Low, S.-C., Abdurahman, M.-H., Ho, Y.-C., Mohamad, M., Suryawan, I. W., Lim, J.-W., Oh, W.-D. 2022. Application of Biochar as Functional Material for Remediation of Organic Pollutants in Water: An Overview. Catalysts. 12(2):0210.

Gunjan, Bharti, R., Sharma, R. 2021Analysis of plastic waste management: Utilization, issues & solutions. Materials Today: Proceedings. 45: 3625–3632.

Jenkins, B. M., Baxter, L. L., Miles, T. R., Miles, T. R. 1998. Combustion properties of biomass. Fuel Processing Technology. 54(1): 17–46.

Koko, I. W., Lim, J., Surya, B., Yenis, I., Sari, N. K., Sari, M. M., Zahra, N. L., Qonitan, F. D., Sarwono, A. 2022Effect of sludge sewage quality on heating value : case study in Jakarta , Indonesia. Desalination and Water Treatment. 28071: 1–8.

Paraschiv, L. S., Serban, A., Paraschiv, S. 2020. Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition. Energy Reports. 6: 36–45.

Pradnyaswari, I., Pongrekun, J. N., Ridhana, P., Budiman, I. 2022. Barriers and Opportunities of Bio pellets Fuel Development in Indonesia: Market Demand and Policy. IOP Conference Series: Earth and Environmental Science. 997(1): 12003.

Raksasat, R., Kiatkittipong, K., Kiatkittipong, W., Wong, C. Y., Lam, M. K., Ho, Y. C., Oh, W. Da, Suryawan, I. W. K., Lim, J. W. 2021. Blended sewage sludge–palm kernel expeller to enhance the palatability of black soldier fly larvae for biodiesel production. Processes. 9(2): 1–13.

Reis, J. S., Araujo, R. O., Lima, V. M. R., Queiroz, L. S., da Costa, C. E. F., Pardauil, J. J. R., Chaar, J. S., Rocha Filho, G. N., de Souza, L. K. C. 2019. Combustion properties of potential Amazon biomass waste for use as fuel. Journal of Thermal Analysis and Calorimetry. 138(5): 3535–3539.

Sales, J. C. S., Santos, A. G., de Castro, A. M., Coelho, M. A. Z. 2021A critical view on the technology readiness level (TRL) of microbial plastics biodegradation. World Journal of Microbiology and Biotechnology. 37(7): 116.

Sari, M. M., Septiariva, I. Y., Fauziah, E. N., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., Suryawan, I. W. K. 2023. Prediction of recovery energy from ultimate analysis of waste generation in Depok City, Indonesia. International Journal of Electrical and Computer Engineering. 13(1): 1.

Sari, M. M., Inoue, T., Harryes, R. K., Suryawan, I. W. K., Yokota, K. 2022. Potential of Recycle Marine Debris in Pluit Emplacement , Jakarta to Achieve Sustainable Reduction of Marine Waste Generation. International Journal of Sustainable Development and Planning, 17(1): 119–125.

Sarwono, A., Septiariva, I. Y., Qonitan, F. D., Zahra, N. L., Sari, N. K., Fauziah, E. N., Ummatin, K. K., Amoa, Q., Faria, N., Wei, L. J., Suryawan, I. W. K. 2021. Refuse Derived Fuel for Energy Recovery by Thermal Processes. A Case Study in Depok City, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 88(1): 12–23.

Sriroth, K., Santisopasri, V., Petchalanuwat, C., Kurotjanawong, K., Piyachomkwan, K., Oates, C. G. 1999. Cassava starch granule structure–function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers. 38(2): 161–170.

Suryawan, I. W. K., Fauziah, E. N., Septiariva, I. Y., Ramadan, S., Sari, M. M., Ummatin, K. K., Lim, J. 2022. Pelletizing of Various Municipal Solid Waste : Effect of Hardness and Density into Caloric Value. Ecological Engineering & Environmental Technology . 23(2): 122–128.

Suryawan, I. W. K., Septiariva, I. Y., Fauziah, E. N., Ramadan, B. S., Qonitan, F. D., Zahra, N. L., Sarwono, A., Sari, M. M., Ummatin, K. K., Wei, L. J. 2022. Municipal Solid Waste to Energy : Palletization of Paper and Garden Waste into Refuse Derived Fuel. Journal of Ecological Engineering. 23(4): 64–74.

Syguła, E., Świechowski, K., Stępień, P., Koziel, J. A., Białowiec, A. 2021. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO2. Materials. 14(1): 0049.

Zahra, N. L., Septiariva, I. Y., Sarwono, A., Qonitan, F. D., Sari, M. M., Gaina, P. C., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., Suhardono, S., Suryawan, I. W. K. 2022Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). International Journal of Renewable Energy Development. 11(2): 523–532.

Refbacks

  • There are currently no refbacks.