Synthesis of Biofoam from Cassava Peel Starch, Banana Peel Starch and Chitosan as Additives

Yuli Darni, Eva Mayanti, Ghea Maulidaco Anandati, Simparmin Br. Ginting, Lia Lismeri, Panca Nugrahini, Herti Utami

Abstract

Biodegradable Foam (Biofoam) material has been made for application of styrofoam substitute food packaging material from a mixture of starch with chitosan as an additive. The purpose of this study was to determine the effect of molding temperature on biofoam products and to determine the effect of chitosan addition on the physical, mechanical, and biodegrability properties of biofoam made from cassava peel starch (a) and banana peel starch (b) which is close to commercial biofoam standards. The production of biofoam uses variations in molding temperature of 125, 150 and 175 °C and variations in chitosan weight with variations of 0, 1, 2 and 3 grams. The resulting biofoam product was then tested for density, water absorption, compressive strength, biodegradation and functional groups with Fourier Transform Infrared  (FTIR). Based on the results of the study, it is known that biofoam that is close to commercial standards is found in the addition of 3 gr chitosan weight with a molding temperature of 125 °C with a density value of 0.423gr/cm3, water absorption of 42.54% and compressive strength of 0.0045 Mpa. As for biodegradation, biofoam products will decompose 55.17% for 55 days in 0 g chitosan weight with a thermopressing temperature of 175 °C. The spectrum results obtained on biofoam have C-H, C-O, C-N, N-H, C=O and O-H functional groups.

Keywords

Biofoam; Cassava peel starch; Banana peel starch; Chitosan; Thermopressing

Full Text:

PDF

References

Agustin, Y. E., Padmawijaya, K. S. 2016. Sintesis Bioplastik Dari Kitosan-Pati Kulit Pisang. Jurnal Teknik Kimia. 10 (2): 42 - 48

Berghuis, N. T., Zulfikar, M. A., Wahyuningrum, D. 2020. Sintesis Membran Komposit Berbahan Dasar Kitosan dengan Metoda Sol-Gel sebagai Membran Fuel Cell Pada Suhu Tinggi. Al Kimiya: Jurnal Ilmu Kimia dan Terapan. 7(1): 35-46.

Bourtoom, T., Chinnan, M. S. 2018. Preparation and properties of rice starch chitosan blend biodegradable film. Food Science and Technology. 41(9) :1633 – 1641.

Dallan, P. R. M., Moreira, P. D. L., Petinari, L., Malmonge, S. M., Beppu, M. M., Genari, S. C., Moraes, A. M. 2007. Effects of chitosan weight concentration and incorporation of chitin and glycerol on dense chitosan membrane properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 80(2): 394-405.

Hendrawati, N., Yulia I., Putri A. W. 2017. Pengaruh Penambahan Kitosan Terhadap Sifat Biodegradable Foam Berbahan Baku Pati. Jurnal Rekayasa Kimia dan Lingkungan. 12(1): 1-7.

Hendrawati. N., Dewi, E. N., Santosa, S. 2019. Karakterisasi Biodegradable Foam dari Pati Sagu Termodifikasi dengan Kitosan Sebagai Aditif. Jurnal Teknik Kimia dan Lingkungan. 3(1): 47-52

Iriani E. S., Richana, N., Sunarti, T. C. 2016. Pengembangan Biodegradable Foam Berbahan Baku Pati. Report. Buletin Teknologi Pasca Panen. Fakultas MIPA Institut Pertanian Bogor. Bogor Agricultural University. Bogor.

Jambeck, J. R., Andrady, A., Geyer, R., Narayan, R., Perryman, M., Siegler, T., Wilcox, C., Lavender, L. K. 2015. Plastic waste inputs from land into the ocean. Science. 347(6223): 768-771.

KLHK. 2015. Rangkaian Hari Lingkungan Hidup 2015- Dialog Penanganan Sampah Plastik. http://kanalkomunikasi.pskl.menlhk.go.id/rangkaian-hlh-2

Lawton, J. W., Shogren, R. L., Tiefenbacher, K. F. 2004. Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Industrial Crops and Products. 19(1): 41 – 48.

Miladinov, V. D., Hanna, M. A. 2001. Temperatures and ethanol effects on the properties of extruded modified starches. Industrial Crops and Products.13(1): 21-28

Munadjim. 1983. Teknologi Pengolahan Pisang. PT Gramedia Pustaka Utama. Jakarta

Purwaningrum, P., 2016. Upaya Mengurangi Timbulan Sampah Plastik Di Lingkungan. Indonesian Journal of Urban and Environmental Technology. 8(2): 141-147.

Richana, N. 2013. Menggali Potensi Ubi Kayu dan Ubi Jalar. Nuansa Cendikia. Bandung.

Saleh, E. R. M., Assagaf, M., Rodianawati, I., Warsiki, E., Wulandari, N. 2014. Determining the best process conditions for biofoam production from local agricultural waste in North Maluku. Proceedings of the National Science and Technology Seminar, Jakarta. 12 November 2014, 1–4.

Setiawan, Heru., Reza, F., Aziz, A. 2015. Penentuan Kondisi Optimum Modifikasi Plasticizer Sorbitol PVA pada Sintesa plastic Biodegradable Dasar Pati Sorgum dan Chitosan Limbah Kulit Udang. Journal of Science and Technology. 13 (1): 29 – 38.

Sofia, A., Prasetya, A. T., Kusumastuti, E. 2017. Comparison of pumpkin-chitosan skin bioplastics with plasticizers from various glycerol sources. Indonesian. Journal of Chemical Science. 6(2), 110– 116.

Soykeabkaew, N., Supaphol, P., Rujiravanit. R., 2004. Preparation and characterization of jute and flax reinforced starch-based composite foams. Carbohydrate Polymers. 58(1): 53-63

Thermo Nicolet. 2001. Introduction to Fourier Transform Infrared Spectrometry. Thermo Nicolet Inc., Madison, USA.

Refbacks

  • There are currently no refbacks.