Bioethanol Production from Spirulina (Arthrospira platensis) by Microwave-Assisted Acid Hydrolysis Pretreatment

Sholeh Ma'mun, Muhammad Wisnu Prasetio, Aditya Rizki Anugrah

Abstract

The world's high consumption of fossil energy increases carbon dioxide (CO2) emissions. The depletion of fossil fuel sources, combined with rising CO2 emissions, has prompted intensive research into renewable energy sources. Bioethanol is an environmentally friendly energy source that has the potential to reduce reliance on gasoline. Bioethanol is produced through the fermentation of monosaccharides. The first and second generations of bioethanol are derived, respectively, from food crops, agricultural waste, and plantations, while the third generation is derived from algae. However, the third generation bioethanol research is still being conducted intensively to develop an optimal process. Macro/microalgae are low-level plants that have the potential to become raw materials for bioethanol. Arthrospira platensis, a spirulina species, is a microalgae with a high carbohydrate content. Apart from that, this type of microalgae is easy to cultivate and grow. This research aims to determine the reducing sugar content which are monosaccharides produced from acid hydrolysis using a microwave at a temperature of 100 °C for 60 – 120 minutes with 0.2 M H2SO4 as the solvent. The hydrolysate obtained was then fermented anaerobically with Saccharomyces cerevisiae in a shaking water bath. The High Performance Liquid Chromatography (HPLC) test was carried out to identify the reducing sugar groups in the hydrolysate. Moreover, the solid content of the biochar remaining from the hydrolysis process was analyzed using Fourier-Transform Infrared Spectrometer (FTIR). From the test results, it was found that the highest concentration of D-glucose (1.19 g/L) occurred at 90 minutes of the hydrolysis. In addition, the hydrolysis of microalgae was also carried out with 0.3 M H2SO4 solvent for 90 minutes. The hydrolysate was then fermented for 96 hours. From the distillation process, it was obtained a bioethanol yield of 2.89%.

Keywords

Arthrospira platensis; Bioethanol; Carbon dioxide; Microalgae; Microwave

Full Text:

PDF

References

Beigbeder, J. B., Dantas J. M. M., Lavoie J. M. 2021. Optimization of Yeast, Sugar and Nutrient Concentrations for High Ethanol Production Rate Using Industrial Sugar Beet Molasses and Response Surface Methodology. Fermentation. 7: 1 – 16.

Beigbeder, J. B., Sanglier M., Dantas J. M. M., Lavoie J. M. 2021. CO2 Capture and Inorganic Carbon Assimilation of Gaseous Fermentation Effluents using Parachlorella kessleri microalgae. Journal of CO2 Utilization. 50: 101581.

Candra, K. P., Ismail K., Marwati, Murdianto W., Yuliani. 2019. Optimization Method for the Bioethanol Production from Giant Cassava (Manihot esculenta var. Gajah) Originated from East Kalimantan. Indonesian Journal of Chemistry. 19: 176 – 182.

Chang, H., Zou Y., Hu R., Zhong N., Zhao S., Zheng Y., Qin Y., Feng C. 2020. Kinetics of Landfill Leachate Remediation and Microalgae Metabolism as well as Energy Potential Evaluation. Journal of Cleaner Production. 269: 122413.

Chaparro-Garnica, J., Salinas-Torres D., Mostazo-López M. J., Morallón E., and Cazorla-Amorós, D. 2021. Biomass Waste Conversion into Low-cost Carbon-based Materials for Supercapacitors: A Sustainable Approach for the Energy Scenario. Journal of Electroanalytical Chemistry. 880: 114899.

Chen, Y., Xu C. 2021. How to Narrow the CO2 Gap from Growth-optimal to Flue Gas Levels by using Microalgae for Carbon Capture and Sustainable Biomass Production. Journal of Cleaner Production. 280: 124448.

Cheng, Y. W., Lim J. S. M., Chong C. C., Lam M. K., Lim J. W., Tan I. S., Foo H. C. Y., Show P L., Lim S. 2021. Unravelling CO2 Capture Performance of Microalgae Cultivation and Other Technologies via Comparative Carbon Balance Analysis. Journal of Environmental Chemical Engineering. 9: 106519.

Choi, Y. Y., Patel A. K., Hong M. E., Chang W. S., Sim S. J. 2019. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An Emerging Sustainable Bioprocess for Reduced CO2 Emission and Biofuel Production. Bioresource Technology Reports. 7: 00270.

Dasan, Y. K., Lam M. K., Yusup S., Lim J. W., Lee K. T. 2019. Life Cycle Evaluation of Microalgae Biofuels Production: Effect of Cultivation System on Energy, Carbon Emission and Cost Balance Analysis. Science of The Total Environment. 688: 112 – 128.

Febrina, R. V., Nasution R. S., Arfi F. 2020. Pengaruh Variasi Massa Ragi Saccharomyces cerevisiae terhadap Kadar Bioetanol Berbahan Dasar Limbah Kulit Kopi Arabika (Coffea Arabica L). Amina, Ar-Raniry Chemistry Journal. 2: 19 – 25.

Fu, Q., Xiao C., Liao Q., Huang Y., Xia A., Zhu X. 2021. Kinetics of Hydrolysis of Microalgae Biomass during Hydrothermal Pretreatment. Biomass Bioenergy. 149: 106074.

Goldemberg, J., Guardabassi P. 2010. The Potential for First-generation Ethanol Production from Sugarcane. Biofuels, Bioproducts and Biorefining. 4: 17 – 24.

Hwang, J. H., Kabra A. N., Ji M. K., Choi J., El-Dalatony M. M., Jeon B. H. 2016. Enhancement of Continuous Fermentative Bioethanol Production using Combined Treatment of Mixed Microalgal Biomass. Algal Research. 17: 14 – 20.

Ishaq, H., Dincer I. 2020. A New Energy System based on Biomass Gasification for Hydrogen and Power Production. Energy Reports. 6: 771 – 781.

Jayus, J., Noorvita I. V., Nurhayati, N. 2016. Produksi bioetanol oleh Saccharomyces cerevisiae FNCC 3210 pada media molases dengan kecepatan agitasi dan aerasi yang berbeda. Jurnal Agroteknologi. 10: 184 – 192.

Kassim, M. A., Bhattacharya S. 2016. Dilute Alkaline Pretreatment for Reducing Sugar Production from Tetraselmis suecica and Chlorella sp. Biomass. Process Biochemistry. 51: 1757 – 1766.

Khodijah, S., Abtokhi, A. 2015. Analisis Pengaruh Variasi Persentase Ragi (Saccharomyces cerevisiae) dan Waktu pada Proses Fermentasi dalam Pemanfaatan Duckweed (Lemna minor) sebagai Bioetanol. Jurnal Neutrino. 7: 71 – 76.

Koc, M., Tukenmez N., Ozturk M. 2020. Development and Thermodynamic Assessment of a Novel Solar and Biomass Energy based Integrated Plant for Liquid Hydrogen Production. International Journal of Hydrogen Energy. 45: 34587 – 34607.

Krishnamoorthy, A., Rodriguez C., Durrant A. 2023. Optimisation of Ultrasonication Pretreatment on Microalgae Chlorella vulgaris & Nannochloropsis oculata for Lipid Extraction in Biodiesel Production. Energy. 278: 128026.

Kusmiyati, Hadiyanto, Fudholi A. 2023. Treatment Updates of Microalgae Biomass for Bioethanol Production: A Comparative Study. Journal of Cleaner Production. 383: 135236.

Kusmiyati, Heratri A., Kubikazari S., Hidayat A., Hadiyanto. 2020. Hydrolysis of Microalgae Spirulina platensis, Chlorella sp., and Macroalgae Ulva lactuca for Bioethanol Production. International Energy Journal. 20: 611 – 620.

Ma’mun, S., Setiawan P. K., Indrayanto E. 2019. Amine based Carbon Dioxide Absorption: The Ionic Strength Effect on the Monoethanolamine Protonation Constant at Temperatures from 313 to 333K. ASEAN Journal of Chemical Engineering. 19: 83 – 90.

Ma’mun, S., Svendsen H. F., Bendiyasa I M. 2018. Amine-based Carbon Dioxide Absorption: Evaluation of Kinetic and Mass Transfer Parameters. Journal of Mechanical Engineering Science. 12: 4088 – 4097.

Ma’mun, S., Wahyudi A., Raghdanesa A. S. 2022. Growth Rate Measurements of Chlorella vulgaris in a Photobioreactor by Neubauer-improved Counting Chamber and Densitometer. IOP Conference Series: Earth and Environmental Science. 963: 012015.

Ma’mun, S., Prasetio M. W., Anugrah A. R., Ruliandi A. P., Pramuwardani D. 2024. Bioethanol from Arthrospira platensis Biomass using a Combined Pretreatment. Chemical Engineering Journal Advances. 19: 100616.

Markou, G., Angelidaki I., Nerantzis E., Georgakakis, D. 2013. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis. Energies. 6: 3937 – 3950.

Mayers, J. J., Vaiciulyte S., Malmhäll-Bah E., Alcaide-Sancho J., Ewald S., Godhe A., Albers E. 2018. Identifying a Marine Microalgae with High Carbohydrate Productivities under Stress and Potential for Efficient Flocculation. Algal Research. 31: 430 – 442.

Miranda, J. R., Passarinho P. C., Gouveia L. 2012. Pre-treatment Optimization of Scenedesmus obliquus Microalga for Bioethanol Production. Bioresource Technology. 104: 342 – 348.

Mohapatra, R. K., Padhi D., Sen R., Nayak M. 2021. Bio-inspired CO2 Capture and Utilization by Microalgae for Bioenergy Feedstock Production: A Greener Approach for Environmental Protection. Bioresource Technology Reports. 19: 101116.

Mussatto, S. I., Dragone G., Guimarães P. M. R., Silva J. P. A., Carneiro L. M., Roberto I. C., Vicente A., Domingues L., Teixeira J. A. 2010. Technological Trends, Global Market, and Challenges of Bio-ethanol Production. Biotechnology Advances. 28: 817 – 830.

Ong, V. Z., Wu T. Y. 2020. An Application of Ultrasonication in Lignocellulosic Biomass Valorisation into Bio-energy and Bio-based Products. Renewable and Sustainable Energy Reviews. 132: 109924

Onigbajumo, A., Taghipour A., Ramirez J., Will G., Ong T. C., Couperthwaite S., Steinberg T., Rainey T. 2021. Techno-economic Assessment of Solar Thermal and Alternative Energy Integration in Supercritical Water Gasification of Microalgae. Energy Conversion and Management. 230: 113807.

Osat, M., Shojaati F., and Osat M. 2022. A Solar-biomass System Associated with CO2 Capture, Power Generation and Waste Heat Recovery for Syngas Production from Rice Straw and Microalgae: Technological, Energy, Exergy, Exergoeconomic and Environmental Assessments. Applied Energy. 340: 120999.

Pérez-Pimienta, Escamilla-Alvarado C. J. A., Ponce-Noyola T., Poggi-Varaldo, H. M. 2016. An Overview of the Enzyme Potential in Bioenergy-producing Biorefineries. Journal of Chemical Technology & Biotechnology. 92: 906 – 924.

Rijal, M., Rumbaru A., Mahulauw, A. 2019. Pengaruh Konsentrasi Saccharomyces cereviceae terhadap Produksi Bioetanol Berbahan Dasar Batang Jagung. Biologi Sel. 8: 59 – 70.

Rodas-Zuluaga, L. I., Castaneda-Hernandez L., Castillo-Vacas E. I., Gradiz-Menjivar A., Lopez-Pacheco I. Y., Castillo-Zacarías C., Boully L., Iqbal H. M. N., Parra-Saldívar R. 2021. Bio-capture and Influence of CO2 on the Growth Rate and Biomass Composition of the Microalgae Botryococcus braunii and Scenedesmus sp. Journal of CO2 Utilization. 43: 101371.

Röder, M., Thiffault E., Martínez-Alonso C., Senez-Gagnon F., Paradis L., Thornley P. 2019. Understanding the Timing and Variation of Greenhouse Gas Emissions of Forest Bioenergy Systems. Biomass Bioenergy. 121: 99 – 114.

Sadatshojaei, E., Wood D. A., Mowla, D. 2020. Third Generation of Biofuels Exploiting Microalgae - Sustainable Green Chemical Processes and their Allied Applications, Springer. 575 – 588.

Skoog, D. A., Holler F. J., Crouch, S. C. 2018, Principle of Instrumental Analysis, 7th ed. Cengage Learning. Boston, USA.

Stewart, C., Hessami M. A. 2005. A Study of Methods of Carbon Dioxide Capture and Sequestration – the Sustainability of a Photosynthetic Bioreactor Approach. Energy Conversion and Management. 46: 403 – 420.

Suharyati, Pratiwi N. I., Pambudi S. H., Wibowo J. L., Arifin F. D., Sauqi A., Damanik J. T., Pangaribuan D. B. T., Kristanto N. 2022. Indonesia Energy Outlook 2022. Bureau of Energy Policy and Assembly Facilitation, Secretariate General of the National Energy Council, Jakarta

Tang, S., Qin C., Wang H., Li S., Tian S. 2011. Study on Supercritical Extraction of Lipids and Enrichment of DHA from Oil-rich Microalgae. Journal of Supercritical Fluids. 57: 44 – 49.

Teymouri, F., Laureano-Perez L., Alizadeh H., Dale B. E. 2005. Optimization of the Ammonia Fiber Explosion (AFEX) Treatment Parameters for Enzymatic Hydrolysis of Corn Stover. Bioresource Technology. 96: 2014 – 2018.

Thangavelu, S. K., Rajkumar T., Pandi D. K., Ahmed A. S., Ani F. N. 2019. Microwave Assisted Acid Hydrolysis for Bioethanol Fuel Production from Sago pith Waste. Waste Management. 86: 80 – 86.

Tourang, M., Baghdadi M., Torang A., Sarkhosh S. 2019. Optimization of Carbohydrate Productivity of Spirulina Microalgae as a Potential Feedstock for Bioethanol Production. International Journal of Environmental Science and Technology. 16: 1303 – 1318.

Um, B. H., Kim Y. S. 2009. A Chance for Korea to Advance Algal-biodiesel Technology. Journal of Industrial and Engineering Chemistry. 15: 1 – 7.

Yang, H., Xin X. 2023. CO2 Capture and Lipid Production Performance of Microalgae in the S-shaped Photobioreactor under Different Culture Modes. Enzyme and Microbial Technology. 165: 110194.

Yu, K. L., Chen W. H., Sheen H. K., Chang J. S., Lin C. S., Ong H. C., Ling T. C. 2020. Bioethanol Production from Acid Pretreated Microalgal Hydrolysate using Microwave-assisted Heating Wet Torrefaction. Fuel. 279: 118435.

Zhang, Y., Soldatov S., Papachristou I., Nazarova N., Link G., Frey W., Silve A. 2020. Pulsed Microwave Pretreatment of Fresh Microalgae for Enhanced Lipid Extraction. Energy. 248: 123555

Zhao, B., Su Y. 2020. Macro Assessment of Microalgae-based CO2 Sequestration: Environmental and Energy Effects. Algal Research. 51: 102066.

Zhao, Z., Situmorang Y. A., An P., Yang J., Hao X., Rizkiana J., Abudula A., Guan G. 2021. A Biomass-based Small-scale Power Generation System with Energy/Exergy Recuperation. Energy Conversion Management. 227: 113623.

Zhou, N., Zhang Y., Gong X., Wang Q., Ma Y. 2012. Ionic Liquids-based Hydrolysis of Chlorella Biomass for Fermentable Sugars. Bioresource Technology. 118: 512 – 517.

Refbacks

  • There are currently no refbacks.