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ABSTRACT 

_________________________________________________________________ 

It is very interesting to study about the electron related to the Schrodinger equation. To explore the 

characteristics of each electron in the system, quantum mechanics with the mathematical method, can be a 

useful tool to explain this problem. Based on this idea, this study is intended to show an alternative method 

to derive the wave function of a single electron as solutions of the Schrodinger equation with Coulomb 

potential. The Nikiforov-Uvarov method has been chosen to be utilized in this study since this method can 

solve the Schrodinger equation with several well-known potentials in the non-relativistic mechanics of 

quantum. The obtained results of this study have succeeded to derive the single-electron wave function from 

the Schrodinger equation. This single-electron wave function is similar to the single-electron wave function 

written in quantum physics textbooks. These results prove that the Nikiforov-Uvarov method provides an 

alternative procedure to solve the Schrodinger equation. 
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INTRODUCTION  

In non-relativistic quantum mechanics, all important information about the physical properties 

of a system can be extracted from the wave function. It is very important to understand about the wave 

function of each electron in the system which can provide many important information about the 

system. This wave function is the solution of the Schrodinger equation and has a relation to the 

eigenenergy of the system. The analytical solutions of the Schrodinger equation for several different 

potentials have been obtained and widely used in advanced fields of molecular, atomic, nuclear, and 

sub-nuclear physics. Up to now, many methods and approaches have been employed to solve the 

Schrodinger equation analytically.  

One of these methods is the Nikiforov-Uvarov (NU) method (Nikiforov & Uvarov, 1988). This 

method has been successful to accomplish different second-order differential equations in non-

relativistic quantum mechanics (Ikot & Akpan, 2012; Pahlavani & Alavi, 2012; Bayrak & Aciksoz, 

2015; Okon et al., 2017). This method has recently been used to find reliable Schrodinger equation 

solutions for many well-known potentials in the non-relativistic mechanics of quantum, such as 

harmonic oscillator (Antia et al., 2018), Kratzer (Edet et al., 2019), Hulthen (Agboola, 2011), Hulthen-

Manning-Morse (Meyur & Debnath, 2009), and pseudoharmonic (Sever et al., 2007). In this study, 

we have utilized the NU method to extract the single-electron wave function. It is intended that the 

result of this study can enrich the alternative way to solve the Schrodinger equation in explaining the 

single-electron wave function as lectured in quantum mechanics textbooks. 

The main purposes of this study are to solve the Schrodinger equation analytically by using the 

NU method and to obtain the wave function and the energy eigenvalue for a single electron. This 

paper is organized as follows. In Section 2, it is explained the Schrodinger equation for a single 

electron. Then, the NU method is briefly explained in Section 3. The analytical solutions as the 

obtained results of this study are displayed in Section 4. Finally, the summary of this study is 

represented in Section 5.  

 

THE SCHRODINGER EQUATION FOR A SINGLE ELECTRON 

As a fundamental parameter to study the atomic structure and to build the wave function of the 

atom, the single-electron wave function is derived from the Schrodinger equation. One can write the 

Schrodinger equation for a central potential as 

−
ℏ2

2μ
∇2Ψnp,l,m(r, θ, ϕ) + V(r)Ψnp,l,m(r, θ, ϕ) = EΨnp,l,m(r, θ, ϕ) (1) 

where ℏ is the reduced Planck constant, μ is the reduced mass of the nucleus, E is the energy 

eigenvalue, and Ψnp,l,m(r, θ, φ) is the wave function in spherical coordinate. In atomic unit, the 

Coulomb potential V(r) of a single electron is approached as 

V(r) = −
Ze2

r
−

ℏ2l(l + 1)

2μr2
 (2) 

where Z is the atomic number, e is the charge of the electron, r is the distance between the electron 

and the nucleus, and l is the momentum angular quantum number. By introducing the total wave 

function, Ψnp,l,m(r, θ, φ) = R(r)Θ(θ)Φ(ϕ), which is normalized by ∫Ψ∗Ψd3r = 1, and in spherical 

coordinate, one can write Eq. (1) as 
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−
ℏ2

2μ
[
1

r2

∂

∂r
(r2

∂

∂r
) +

1

r2
(

1

sin θ

∂

∂θ
[sin θ

∂

∂θ
]) +

1

r2

1

sin2 θ

∂2

∂ϕ2
] R(r)Θ(θ)Φ(ϕ) 

+[−
Ze2

r
−

ℏ2l(l + 1)

2μr2
] R(r)Θ(θ)Φ(ϕ) = ER(r)Θ(θ)Φ(ϕ) 

(3) 

where R(r) is the radial function, Θ(θ) is the polar function, and Φ(ϕ) is the azimuthal function. By 

using the separation variable, it can be obtained three equations as follows 

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

ℏ2
[E +

Ze2

r
−

ℏ2l(l + 1)

2μr2
] R(r) = 0 (4) 

d2Θ(θ)

dθ2
+

cos θ

sin θ

dΘ(θ)

dθ
+ {l(l + 1) −

m2

sin2 θ
}Θ(θ) = 0 (5) 

−
ℏ2

2μ
[
1

r2

1

sin2 θ

∂2

∂ϕ2
]Φ(ϕ) −

2μ

ℏ2

m2

r2 sin2 θ
Φ(ϕ) = 0 (6) 

where m is the magnetic quantum number respectively (Eisberg, 1974; Griffith, 1995; Zettili, 2009). 

To solve these three equation, it is presented an alternative procedure by using the NU method. 

 

THE NIKIFOROV-UVAROV (NU) METHOD 

The NU method is constructed to accomplish the hypergeometric type second-order differential 

equations through the special orthogonal functions. This method can be performed to solve the 

following second-order differential equations with a suitable coordinate transformation where 

d2ψn(s)

ds2
+

τ̃(s)

σ(s)
 
dψn(s)

ds
+

σ̃(s)

σ2(s)
 ψn(s) = 0 (7) 

where σ(s) and σ̃(s) are the mostly second-order polynomials. The parameter τ̃(s) is a first-order 

polynomial. Separating the variables and applying the following assumption, one can formulate the 

function ψn(s) as 

 ψn(s) = ϕn(s) yn(s)       (8) 

where the function ϕ(s) can be determined by using 

dϕ(s)

ds

1

ϕ(s)
=

π(s)

σ(s)
       (9) 

The function yn(s) in Eq. (8) is the hypergeometric form function in which the Rodrigues 

relation provides polynomial solutions as 

yn(s) =
Bn

ρ(s)

dn

dsn
{σn(s)ρ(s)}      (10) 

where Bn is a normalization constant. The function ρ(s) can be analyzed by using 
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dρ(s)

ds

1

ρ(s)
=

τ(s) − σ′(s)

σ(s)
        (11) 

Next, the expressions of 

λn = −n τ′(s) −
n(n − 1)

2
σ′′(s)       (12) 

and 

λ = k + π′(s)       (13) 

are equalized to yield the energy eigenvalue. The superscript ′ and ′′ are the first and the second 

derivatives of the functions respectively. The parameter τ(s) can be gained by using 

τ(s) = τ̃ + 2π(s)        (14) 

The π(s) parameter is yielded by solving the resulting quadratic equation as follows 

π(s) =
σ′(s) − τ̃(s)

2
± √{

σ′(s) − τ̃(s)

2
}

2

− σ̃(s) + kσ(s)        (15) 

The determination of k is the crucial point in the calculation to solve Eq. (15). The k value can 

be determined by setting the discriminant of the square root to zero (Nikiforov & Uvarov, 1988).  

 

ANALYTICAL SOLUTIONS 

The Solution to Radial Equation 

In this section, the NU method was employed to achieve the solution to radial equation. To 

solve Eq. (4) one should consider the centrifugal approximation, i.e. 

d2R(r)

dr2
+

2

r

dR(r)

dr
+

1

r2
{
2μE

ℏ2
r2 +

2μZe2

ℏ2
r − l(l + 1)} R(r) = 0 (16) 

By using the transformation, Eq. (16) becomes 

d2ψ(s)

ds2
+

2

s

dψ(s)

ds
+

[−A2s2 + Bs − C]

s2
ψ(s) = 0 (17) 

where  

−A2 =
2μE

ℏ2
,       B =

2μZe2

ℏ2
, C = l(l + 1) (18) 

By comparing Eq. (7) and Eq. (17), one can determine the following 

τ̃(s) = 2,   σ(s) = s,   σ̃(s) = −A2s2 + βs − C (19) 

Substituting these expressions in Eq. (19) into Eq. (15), one has 
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π(s) = −
1

2
±

1

2
√4A2s2 + (4k − 4B)s + 1 + 4C (20) 

The constant parameter k can be determined by applying the zero discriminant for the root-

part, i.e.  

k = B ± A√1 + 4C (21) 

Thus, there are four possible solutions for Eq. (20), i.e. 

π(s) = {
−

1

2
±

1

2
{2As + √1 + 4C}  for k = B + A√1 + 4C

−
1

2
±

1

2
{2As − √1 + 4C}  for k = B − A√1 + 4C

 (22) 

Since Eq. (14) should have a negative derivative physically (for the bound-state case), the valid 

solution is  

π(s) = −
1

2
−

1

2
{2As − √1 + 4C} (23) 

for k = B − A√1 + 4C and it yields 

τ(s) = 1 + √1 + 4C − 2As (24) 

Then, by using Eq. (12) and (13), it can be defined that 

2nA = B − A√1 + 4C − A (25) 

for n = 1,2,3, …. Then, assisted by Eq. (18), Eq. (25) can produce the energy eigenvalue as  

Enp
= −

1

2
μc2

Z2α2

np
2

 (26) 

where np = n + 1 + l is well-known as the principal quantum number. It should be noted that n is the 

non-physics integer number. Next, to obtain the wave function, π(s) from Eq. (23) and σ(s) from Eq. 

(19) were substituted into Eq. (9). By solving the first-order differential equation, one can obtain 

ϕ(s) = sle−sA (27) 

For the weight function ρ(s), it can be determined by using 

ρ(s) = s2l+1 e−2As (28) 

Substituting Eq. (28) into the Rodrigues relation in Eq. (10), one has 

yn(s) =
1

n!
e2Ass−(2l+1)

dn

dsn
{sn+2l+1 e−2As} (29) 

Therefore, based on Eq. (8), the wave function can be formulated as 
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ψn,l(s) = Nn,l{s
le−sA} {

1

n!
e2Ass−(2l+1)

dn

dsn
{sn+2l+1 e−2As}} (30) 

Therefore, by using Eq. (18), np = n + 1 + l, and r−1 =  Z(np
2a0)

−1
 (Gasiorowicz, 2000) the 

combined wave function can be formulated as 

ψn,l(r) = Nn,l {s
le

− 
Zr

(n+l+1)a0} {
1

n!
e

2Zr
(n+l+1)a0r−(2∙l+1)

dn

drn
{rn+2l+1 e

− 
2Zr

(n+l+1)a0}} (31) 

where a0 is the Bohr radius and Nn,l is the normalization constant. Because n is not a physical property, 

it should be taken good care to obtain the radial wave function. It is needed the relation between the 

radial wave function R(r) and the function ψ(r). The equalization between those function can be 

formulated as  

Rnp,l(r) = ψn,l(r) = ψnp−1−l,l(r) (32) 

The Solution to Angular Equation 

To obtain the solutions to the angular equation, it is commenced by using Eq. (5). To meet the 

requirement of Eq. (7), by using the transformation variable, the form of Eq. (5) is transformed to be 

d2ψ(s)

ds2
−

2s

(1 − s2)

dψ(s)

ds
+

{l(l + 1)(1 − s2) − m2}

(1 − s2)2
ψ(s) = 0 (33) 

By comparing Eq. (7) and Eq. (33), one can determine the following 

τ̃(s) = −2s,   σ(s) = 1 − s2,   σ̃(s) = l(l + 1)(1 − s2) − m2 (34) 

Substituting these expressions in Eq. (34) into Eq. (15), one has 

π(s) = ±√[l(l + 1) − k]s2 + k + m2 − l(l + 1) (35) 

Following the similar procedures in the radial equation, one can obtain 

k = −m2 + l(l + 1) (36) 

π(s) = −ms (37) 

τ(s) = −2(1 + m)s (38) 

λ = −m2 + l(l + 1) − m (39) 

λn = 2n + 2mn + n(n − 1) (40) 

n = l − m (41) 

ϕ(s) = (1 − s2)
m
2  (42) 
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ρ(s) = (1 − s2)m (43) 

ψl,m(s) = Nl,m [(1 − s2)
m
2 ] [

1

(l − m)!
(1 − s2)−m

dl−m

dsl−m
{(1 − s2)l}] (44) 

where 𝑁𝑙,𝑚 is the normalization constant. 

The Solution to Azimuthal Equation 

To solve Eq. (6), the boundary condition is set to fulfill 

Φm(ϕ) = Φm(ϕ + 2π) (45) 

Therefore, the azimuthal equation has a solution as follows 

Φm(ϕ) =
1

√2π
exp(±imϕ) (46) 

where i is the imaginary number. 

Based on these analytical results above, the wave function can be obtained for each quantum 

number of a single electron. By using Eq. (31) and Eq. (32), it is obtained the radial wave function as 

shown in Table 1. The angular and the azimuth terms can be obtained by using Eq. (44) and Eq. (46), 

as presented in Table 2. These obtained results are similar to the wave functions presented in quantum 

physics textbooks. It shows that the wave function and the energy eigenvalue of a single electron can 

be derived by using the NU method. This NU method provides an alternative way to solve the non-

relativistic Schrodinger equation analytically where this equation has second-order derivative. This 

method can be used not only for the Schrodinger equation, but also for every equation that has second-

order derivative.  

Table 1. The radial wave function of a single electron. 

np n l ψn,l(r) Rnp,l(r) 

1 0 0 ψ0,0(r) R1,0 = 2(
Z

a0

)

3
2

exp [−
Zr

a0

] 

2 1 0 ψ1,0(r) R2,0 = 2(
Z

2a0

)

3
2

(1 −
Zr

2a0

) exp [−
Zr

2a0

] 

2 1 1 ψ0,1(r) R2,1 =
1

√3
(

Z

2a0

)

3
2

(
Zr

a0

) exp [−
Zr

2a0

] 

3 2 0 ψ2,0(r) R3,0 = 2(
Z

3a0

)

3
2

(1 −
2Zr

3a0

+
2Z2r2

27a0
2 ) exp [−

Zr

3a0

] 

3 1 1 ψ1,1(r) R3,1 =
4√2

3
(

Z

3a0

)

3
2

(
Zr

a0

−
Z2r2

6a0
2 ) exp [−

Zr

3a0

] 
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Table 2. The angular and the azimuth wave function for a single electron. 

l m Θl,m(θ) Φm(ϕ) 

0 0 
1

√2
 

1

√2π
 

1 0 
√3

√2
cos θ 

1

√2π
 

1 1 
√3

2
sin θ 

1

√2π
exp(±iϕ) 

 

CONCLUSION 

In this theoretical study, the Schrodinger equation has been solved analytically by using the NU 

method. The expressions of the wave function and the energy eigenvalue of a single electron have 

been also derived. The obtained expressions are in good agreement with the results lectured in the 

quantum physics textbooks. These results have proven that the NU method can provide an alternative 

way to solve the Schrodinger equation applied at the atomic level. This study can be extended to solve 

a system with many electrons with special treatment. 
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Appendix 1 

Radial part 

R2,0(r) = ψ2−0−1,0(r) = ψ1,0(r) 

ψ1,0(r) = N1,0 {s0e
− 

Zr
(1+0+1)a0} {

1

1!
e

2Zr
(1+0+1)a0r−(2∙0+1)

d1

dr1
{r1+2∙0+1 e

− 
2Zr

(1+0+1)a0}} 

ψ1,0(r) = N1,0 {e
− 

Zr
2a0} {e

2Zr
2a0

1

r

d

dr
[r2 e

− 
2Zr
2a0]} 

ψ1,0(r) = N1,0 {
1

r
e

Zr
2a0} {

d

dr
[r2 e

− 
Zr
a0]} 

ψ1,0(r) = N1,0 {
1

r
e

Zr
2a0} {e

− 
Zr
a0

d

dr
[r2 ] + r2

d

dr
[ e

− 
Zr
a0]} 

ψ1,0(r) = N1,0 {
1

r
e

Zr
2a0} {2re

− 
Zr
a0 − 

Z

a0

r2e
− 

Zr
a0} 

ψ1,0(r) = N1,0e
Zr
2a0e

− 
Zr
a0 {2 − 

Zr

a0

} 

ψ1,0(r) = N1,02e
− 

Zr
2a0 {1 − 

Zr

2a0

} 

 

∫{N1,02e
− 

Zr
2a0 {1 − 

Zr

2a0

}}

2

r2dr = 1 

N1,0
2 4∫ {e

− 
Zr
a0 {r2 − 

2Zr3

2a0

+
Z2r4

4a0
2 }} dr = 1 

N1,0
2 4 [∫ r2e

− 
Zr
a0dr −

Z

a0

∫r3e
− 

Zr
a0dr +

Z2

4a0
2 ∫r4e

− 
Zr
a0dr] = 1 

N1,0
2 4

[
 
 
 2!

(
Z
a0

)
3 −

Z

a0

3!

(
Z
a0

)
4 +

Z2

4a0
2

4!

(
Z
a0

)
5

]
 
 
 
= 1 

N1,0
2 4 [

2

(
Z
a0

)
3 −

6

(
Z
a0

)
3 +

1

4

24

(
Z
a0

)
3] = 1 

N1,0
2 4[2 − 6 + 6] = (

Z

a0

)
3

 

N1,0
2 =

1

8
(

Z

a0

)
3

 

N1,0 = √(
Z

2a0

)
3
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ψ1,0(r) = N1,02e
− 

Zr
2a0 {1 − 

Zr

2a0

} 

ψ1,0(r) = 2 (
Z

2a0

)

3
2
{1 − 

Zr

2a0

} e
− 

Zr
2a0 

 

Angular part 

ψl,m(cos θ) = Nl,m [(1 − cos2 θ)
m
2 ] 

× [
1

(l − m)!
(1 − cos2 θ)−m

dl−m

d(cos θ)l−m
{(1 − cos2 θ)l}] 

ψ1,1(cos θ) = N1,1 [(1 − cos2 θ)
1
2] [

1

(1 − 1)!
(1 − cos2 θ)−1

d1−1

d(cos θ)1−1
{(1 − cos2 θ)1}] 

ψ1,1(cos θ) = N1,1 [(1 − cos2 θ)
1
2] 

ψ1,1(cos θ) = N1,1 [(sin2 θ)
1
2] 

ψ1,1(cos θ) = N1,1[sin θ] 

 

∫{N1,1[sin θ]}
2
sin θ dθ

π

0

= 1 

N1,1
2 ∫ sin2 θ sin θ dθ

π

0

= 1 

N1,1
2 [

1

12
cos 3θ −

3

4
cos θ]

0

π

= 1 

N1,1
2 [

4

3
] = 1 

N1,1
2 =

3

4
 

N1,1 =
√3

2
 

ψ1,1(cos θ) = N1,1[sin θ] =
√3

2
sin θ 

 

 

 


