Preliminary Study of The Structure of Hesperidin and Neohesperidin as a Potential Inhibitor of SARS-CoV-2 by using The DFT Method

Wahyu Sulisti(1), Samakhatus Sahiroh(2), Lutfi Rohman(3), Artoto Arkundato(4), Wibawa Wibawa(5),


(1) Departement of Physics, Faculty of Mathematics and Science, Universitas Jember
(2) Departement of Physics, Faculty of Mathematics and Science, Universitas Jember
(3) Departement of Physics, Faculty of Mathematics and Science, Universitas Jember
(4) Departement of Physics, Faculty of Mathematics and Science, Universitas Jember
(5) Department of Informatics, Faculty of Sciences anf technology, Universitas PGRI

Abstract

The discovery of drugs as COVID-19 antivirals has been intensively carried out by researchers as an effort to reduce the number of victims of the COVID-19 pandemic in 2020. The discovery of main protease (Mpro) which plays a role in protein replication and transcription helped researchers identify virus inhibitors. This research has examined the potency of the bioflavonoid compounds hesperidin and the flavanon glycosides neohesperidin and their structural stability as potential inhibitors of SARS-CoV-2 by DFT computation. The first method used is the calculation of density functional theory (DFT) on hesperidin and neohesperidin molecules to optimize the geometry of the molecular structure, analysis of frontier molecular orbitals (FMO), chemical reactivity index, and map electrostatic potential (MEP).

Keywords

SARS-COV-2, Mpro, Hesperidin, Density Functional Theory

Full Text:

PDF

References

Chakraborty, S., Zhang, J., Krause, J.A., & Guan, H. (2010). An efficient nickel catalyst for the reduction of carbon dioxide with a borane. Journal of the American Chemical Society, 132(26), 8872-8873.

Cheng, F., Huynh, T. K., Yang, C. S., Hu, D., Shen, Y., Tu, C., Wu, Y., Tang, C., Huang, W., Chen, Y., & Ho, C. (2021). Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection. Nutrients, 13(8), 2800.

Denaro, M., Smeriglio, A., & Trombetta, D. (2021). Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants, 10(2), 140.

Ebenso, E. E., Arslan, T., Kandemirli, F., Caner, N., & Love, I. (2010). Quantum Chemical Studies of Some Rhodanine Azosulpha Drugs as Corrosion Inhibitors for Mild Steel in Acidic Medium. International Journal of Quantum Chemistry, 110, 1003-1018.

Gece, G., & Bilgiç, S. (2017). A computational study of two hexitol borates as corrosion inhibitors for steel. International Journal of Corrosion and Scale Inhibition, 6(4), 476–484.

Hegazy, M. A., Badawi, A. M., Rehim, S. S., & Kamel, W. M. (2013). Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling. Corrosion Science, 69, 110-122.

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L.W., Xu, W., Xiao, G., Qin, C., Shí, Z., Jiang, H., Rao, Z., & Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289-293.

Kanaze, F. I., Termentzi, A., Gabrieli, C., Niopas, I., Georgarakis, M., & Kokkalou, E. (2009). The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomedical chromatography : BMC, 23(3), 239-49.

Lee, J., Lee, S., Kim, Y., & Jeong, C. S. (2009). Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease. Phytotherapy Research, 23. 1748-1753.

Pearson, R. G. (1988). Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry, 27, 1423-1430.

Rouseff, R., Martin, S., & Youtsey, C. O. (1987). Quantitative survey of narirutin naringin hesperidin and neohesperidin in citrus. Journal of Agricultural and Food Chemistry, 35, 1027-1030.

Sireesha, D., Monika, M. L., & Bakshi, V. (2017). Development and Validation of UV Spectrophotometric Method for The Simultaneous Estimation of Rosuvastatin and Ezetimibe in Pharmaceutical Dosage Form. Asian Journal of Pharmaceutical Analysis, 7, 135-140.

Udowo, V. (2018). Computational Studies of the Corrosion Inhibition Potentials of Quercetin and Coumarin. Archives of Organic and Inorganic Chemical Sciences, 2(2).

Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30, 127377-127377.

Yasin, S., Azzahra, A., Ramadhan, N., & Mylanda, V. (2020). Molecular Docking Study and ADMET Prediction of Several Indonesian Jamu Bioactive Compounds against SARS-CoV-2 Main Protease (Mpro). Berkala Ilmiah Mahasiswa Farmasi Indonesia, 7(2), 24-41.

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.y.), 368, 409-412.

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats