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ABSTRACT

The Soil and Water Assessment Tool (SWAT) is an ecohydrological model widely applied to assess water quality 
and watershed management. This tool also has the advantage of  building watershed models even with limited 
monitoring data availability. The essential data required by this tool includes digital elevation models (DEM), 
land use maps, climate data, and soil data. Nonetheless, the availability of  spatial data is still often a challenge in 
developing hydrological models, especially in developing countries such as Indonesia. This research will compare 
the accuracy of  freely available data in Indonesia in facilitating the development of  hydrological models from 
SWAT in the Rawa Pening catchment area. This research is crucial since Rawa Pening Lake is a priority lake for 
revitalization, so the research results will help provide suggestions regarding presenting data in SWAT modeling. 
This research compares SWAT models built from different land use and DEM (Digital Elevation Models) data. 
The land use data being compared is the result of  processing from the Google Earth Engine (GEE) platform us-
ing machine learning with land use data from government agencies, namely the Ministry of  Environment and 
Forestry, while the DEM data being compared is SRTM and DEMNAS data. The validation results using R, R2, 
RMSE, and NSE show that, in general, the model built from land use from GEE is the best compared to the other 
models. In modeling SWAT in Indonesia, we recommend using good-quality land-use data. Utilizing supervised 
classification through Random Forest (RF) algorithms within GEE can facilitate the acquisition of  this data. To 
reduce computation time, the DEM can be SRTM with a small sacrifice of  accuracy.
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INTRODUCTION
 
Water is a highly essential source of  living 

on Earth. The importance of  water resources is a 
primary human need and greatly influences food 
and energy security (Pasika & Gandla, 2020; 
Wulandari et al., 2021). However, current cli-
mate change is affecting the quantity and quality 
of  water resources, requiring management and 
independent investigations into the mechanisms 

of  their availability (Chen et al., 2019; Saade et 
al., 2021). Managing water resources is a critical 
problem in the water security framework defined 
by the Sustainable Development Goals (SDGs) 
(UNEP, 2017). To unequivocally achieve the 
United Nations’ SDGs, advanced techniques are 
required to intensify research in water and wa-
tershed management (Dekongmen et al., 2022; 
Djufry, 2012). Advanced techniques can take the 
form of  eco-hydrological modeling tools such as 
the Soil and Water Assessment Tool (SWAT) (Ha 
et al., 2018). 
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SWAT is an ecohydrological model created 
by the Agricultural Research Service of  the Uni-
ted States Department of  Agriculture (USDA) 
(Arnold et al., 1998; Sammartano et al., 2019; 
Cai et al., 2023). This is a physically based model 
with a spatially dispersed hydrologic model based 
on hydrologic response units (HRUs) created by 
a mix of  land use, soil type, and slope (Poblete 
et al., 2020). SWAT's primary application is eco-
hydrology simulation in small watersheds, parti-
cularly concerning land use and climate change 
(Tan et al., 2019; Marin et al., 2020). These uses 
include research on water quality and the fore-
cast of  the effect of  land-use changes and erosion 
(Anand et al., 2018; Sowah et al., 2020; Mapes 
& Pricope, 2020; Lei et al., 2021; Olaoye et al., 
2021; Panda et al., 2021; Alitane et al., 2022; 
Hung et al., 2022). 

The SWAT model simulates hydrological, 
sediment, pollutant processes, and vegetation 
management in the basin using a water balan-
ce method (Aloui et al., 2023). The SWAT tool 
can also be paired with a statistical downsca-
ling model as a hydrological and climate chan-
ge parameter (Eingrüber & Korres, 2022). The 
SWAT modeling method can be applied to rain 
and run-off  factors, which will then be used to 
analyze farming dynamics (Dash et al., 2020). In 
some SWAT studies, it is also used to assess the 
effect of  Ridging Across Slope (RAcS) and Ridge 
Along Slope (RAIS) on sedimentation results in 
basin areas (Kuti & Ewemoje, 2021). The SWAT 
model can be changed in various studies, inclu-
ding Soil Organic Carbon, where the algorithm 
is merged based on variables (Liang et al., 2022).

SWAT has the benefit of  being able to 
construct a watershed model using less surveil-
lance data. The data set contains a digital eleva-
tion model (DEM), land use map, climate data, 
and soil data (Kiros et al., 2015; Muthee et al., 
2022). Nonetheless, the availability of  spatial 
data is frequently a problem in creating hydro-
logical models, particularly in emerging nations 
(Escamilla-Rivera et al., 2022). Particularly in 
Southeast Asian nations, such as Indonesia, 
SWAT applications are still limited due to the li-
mited availability of  land use maps (Tan et al., 
2020). The lack of  high spatial resolution (30 m) 
land use data with regular updates is due to the 
need for high-performance computing to keep, 
organize, and evaluate huge volumes of  satellite 
data (Midekisa et al., 2017). 

The problem of  providing appropriate 
land use data for SWAT modeling in developing 
countries is not only caused by budget and hu-
man resources. The difficulty of  supplying land 

use statistics is also affected by geographical va-
riables, such as Indonesia's heavy cloud cover 
(Dimyati et al., 2022). However, Indonesia has a 
high rate of  watershed harm and a decline in pub-
lic water quality (Trisakti et al., 2017; Pambudi, 
2019). The Rawa Pening Catchment Area is one 
example of  a significant Environmental Disaster 
Risk (Mardiatno et al., 2021). It has a water body 
named Rawa Pening Lake, and the water condi-
tion is Highly Polluted, so it has become one of  
the national priority lakes in Central Java Provin-
ce, Indonesia (Piranti et al., 2019; Mardiatno et 
al., 2023). In fact, one of  the outlets from Rawa 
Pening Lake, namely the Tuntang River, is a pol-
luted river prone to flooding (Danurrachman et 
al., 2023). This makes providing representative 
land use data in the Rawa Pening catchment area 
very urgent because this is related to SWAT mo-
deling for policy formulation.

A platform that is very helpful in providing 
and analyzing representative land use is Google 
Earth Engine (GEE) (Kumar & Mutanga, 2018; 
Sidhu et al., 2018). This cloud-based platform 
provides datasets and facilitates the processing 
of  geo-big data over a wide area for environ-
mental monitoring over a long period (Amani et 
al., 2020). In the analysis process, GEE also has 
machine learning algorithms such as Classifica-
tion and Regression Tree (CART), Support Vec-
tor Machine (SVM), and Random Forest (RF) 
(Shaharum et al., 2020; Gxokwe et al., 2022). 
Many studies, including Wang et al. (2018), Pan-
de (2022), Magidi et al. (2021), and Kolli et al. 
(2020), have been using machine learning in GEE 
to track land use linked to watersheds and wa-
ter resources. Studies that address machine lear-
ning selection and processing stages, on the other 
hand, are rarely conducted (Shih et al., 2019). 
The comparison of  machine learning in provi-
ding land use data for SWAT modeling is one of  
the future SWAT research challenges (Aloui et 
al., 2023).

Based on the problems and facts described, 
this research uses machine learning in GEE to 
analyze land use, where land use data are used 
to create a hydrological model from SWAT in the 
Rawa Pening catchment area. In addition, this re-
search compares the SWAT model from land use 
data from machine learning at GEE with data 
from the Indonesian Ministry of  Environment 
and Forestry (KLHK). This research also com-
pares SWAT models built from different DEM 
data, namely Shuttle Radar Topography Mission 
(SRTM) and DEMNAS. Each DEM used im-
pacts the SWAT result (Nazari-Sharabian et al., 
2020; Tran et al., 2022). Research related to com-
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paring data in SWAT studies in developing count-
ries has been widely carried out, such as Wiwoho 
et al. (2021), Aqnouy et al. (2023), Chathuranika 
et al. (2022), Dos Santos et al. (2022), and (She-
kar et al., 2023) with climate and meteorological 
data, but research comparing land use and DEM 
data is still rarely carried out. The land use data 
and DEM data that we compare can be obtained 
for free to answer the problem of  lack of  data 
related to SWAT modeling. It is hoped that the 
results of  this research can provide suggestions to 
help developing countries, especially Indonesia, 
generate an efficient SWAT model for managing 
water resources and watersheds, especially in pri-
ority areas such as the Rawa Pening Catchment 
Area.

METHODS

This research was specifically conducted in 
the Rawa Pening Catchment Area, an upstream 
part of  the Tuntang sub-watershed. Administra-
tively, the Rawapening catchment area is located 
in Semarang Regency, Central Java Province, In-
donesia (Figure 1). Geomorphologically, Rawa 
Pening is surrounded by mountains that serve 
as water catchment areas (Sanjoto et al., 2020). 
This site was selected because it has a variety of  
hydrological activities, including lakes, irrigation, 
rivers, wetlands, and rain recharge.

Figure 1. Research Area

This research examined SWAT models 
derived from various land use and DEM data. 
Based on actual circumstances, the SWAT model 
was evaluated for accuracy. Due to the lack of  

data, this research assessed the SWAT model in 
the Rawa Pening Catchment Area in 2019. The 
information used is freely accessible in Indonesia 
(Table 1). Land use KLHK data had been used, 
as well as GEE data coming from machine lear-
ning-based categorization. CART and RF were 
the Machine Learning technologies used.

Table 1. Data and Source

Parameter Source

Land-use

Land-use mapping using ma-
chine learning in GEE

KLHK (Indonesian Ministry of  
Environment and Forestry)

DEM 
( D i g i t a l 
E l eva t i o n 
Model)

SRTM

DEMNAS

Soil
Indonesian Center for Agricul-
tural Land Resources Research 
and Development

Weather NASA POWER

The DEM data utilized in SWAT mode-
ling are SRTM, which can be accessed via the fol-
lowing link https://earthexplorer.usgs.gov/, and 
DEMNAS can be accessed via the following link 
https://tanahair.indonesia.go.id/demnas/#/ 
freely. DEMNAS is DEM data produced by Ba-
dan Informasi Geospasial (BIG) or the Indonesi-
an Geospatial Information Agency, derived from 
the assimilation of  IFSAR, TERRASAR-X, 
ALOS PALSAR, and mass point data (Zylshal et 
al., 2021). DEMNAS has a more precise spatial 
resolution of  0.27-arcsecond when compared to 
SRTM, which has a precision of  30-arcsecond 
(Mutaqin et al., 2021). DEMNAS is an Indonesi-
an data product that can be extracted into data on 
the height of  the Earth’s surface and used for hyd-
rological studies (Ihsan et al., 2023). The follo-
wing are the steps of  data handling and analysis:

Land use mapping had three major stages: 
selecting data sources, selecting classification 
techniques, and evaluating accuracy. The data 
source chosen were satellite images obtained from 
GEE, namely Landsat 8 OLI/TIRS Collection 
2 atmospherically corrected surface reflectance. 
This research compared Machine Learning RF 
and CART for the classification technique, which 
is pixel-based Supervised Classification. The clas-
sification method employed input data, namely 
image pairs constructed from various bands and 
Spectral Indices; the Spectral Indices employed in 
this research are listed in Table 2. There were six 
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bands used: band 2, band 3, band 4, band 5, band 
6, and band 7. These bands were selected because 
they have higher accuracy than a mix of  all bands 
(Yu et al., 2019; Fariz et al., 2022). The six ban-
ds, along with DEM and spectral indices, were 
expected to improve the precision of  the land use 
map. The spectral indices chosen were the Nor-
malized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI), 
Normalized Difference Built-up Index (NDBI), 
and Bare Soil Index (BSI) (Table 2). NDVI was 
chosen to distinguish between vegetation and 
non-vegetation, while NDBI was chosen to disc-
riminate between built-up areas and was proven 
to identify building density (Loukika et al., 2021; 
Fariz & Faniza, 2023). Water spectral indices 
such as NDWI and bare soil such as BSI were 
chosen to discriminate water bodies and bare soil 
objects, which are numerous in the research lo-
cation.

Table 2. Spectral Indices Used in the Research

Spectral 
indices

Formula Source

NDVI Rouse 
Jr et al. 
(1974)

NDWI Gao 
(1996)

NDBI Zha et al. 
(2003)

BSI Roy et al. 
(1997)

The classification procedure began with 
training on the incoming data. Training samples 
were collected in batches of  50 for each land use 
type. This research charted land use with nine 
groups related to the Ministry of  Environment 
and Forestry for a total of  450 marks in the Trai-
ning Sample (Letsoin et al., 2020). Following 
the training data collection, the categorization 
procedure was carried out using CART and RF 
machine learning. The final step was to validate 
the mapping findings using a validation sample 
of  225 points.

The SWAT model in this research used the 
QSWAT3 model with an interface in Quantum 
GIS. The SWAT model could be constructed uti-
lizing data from land use, DEM, sediment, and 
weather. The four SWAT models were compared 
with the configurations shown in Table 3. The 
SWAT models were then contrasted with the wa-
tershed boundaries and river flow values received 

from BBWS Pemali Juana (Central River Regi-
on). The watershed factors contrasted were the 
area’s size, form, and elevation, which influenced 
the hydrological reaction (Buakhao & Kangrang, 
2016).

Table 3. SWAT Models Compared

Model Land-use DEM

Model A GEE DEMNAS

Model B GEE SRTM

Model C KLHK DEMNAS

Model D KLHK SRTM

The model evaluation used in this research 
was a comparison of  the streamflow data produ-
ced by the SWAT model with the Automatic Wa-
ter Level Recorder (AWLR) measurement data 
from BBWS Pemali Juana. The AWLR location 
is in Tuntang River at -7.2610, 110.4526 (Figu-
re 2). Several formulas, such as R, were used in 
validation (Correlation coefficient), R2 (Coeffi-
cient of  determination), Root Mean Square Error 
(RMSE), and Nash-Sutcliffe efficiency (NSE). 
R and R2 functioned to indicate the degree of  
connection between the observation and model, 
where the model was suggested to be more re-
lated and important the closer it got to 1. NSE 
indicated how well the observation versus model 
data plot matched the 1:1 line (Knoben et al., 
2019). The RMSE number was used to calculate 
a model’s error rate; the lower the RMSE value, 
the more accurate the model. These data were 
most commonly used for SWAT model valida-
tion. Therefore, they can be used for validation 
(Gao et al., 2019).

Figure 2. AWLR Location



5
A. V. Amalia, T. R. Fariz, F. Lutfiananda, H. M. Ihsan, R. Atunnisa, A. Jabbar / JPII 13 (1) (2024) 1-11

RESULTS AND DISCUSSION

Land use mapping uses machine learning-
based supervised classification on GEE. Using 
GEE in land use mapping in Indonesia is very 
helpful in reducing cloud cover because we get 
cloud-free satellite imagery using the BQA algo-
rithm and median function (Fariz & Nurhidaya-
ti, 2020; Jamaluddin et al., 2022). The results of  
land use mapping produce land use classes, na-
mely paddy field, forest plantation, forest, settle-
ment, mixed garden, dry agriculture, mixed dry 
agriculture, dry shrub, and water bodies. The 
mapping results show that RF is the best machine 
learning for mapping land use in the Rawa Pe-
ning Catchment Area. Land use maps built from 

CART have an accuracy value of  0.48, while land 
use maps built from RF have an accuracy value 
of  0.85.

The fact that RF is the best machine lear-
ning in this research is most likely due to its non-
linear nature and noise-free classification results 
(Pelletier et al., 2016). Compared to other forms 
of  Machine Learning, such as CART, Machine 
Learning that employs a set of  decision trees has 
been shown to map land use with greater precisi-
on (Orieschnig et al., 2021; Zhang et al., 2022). 
This provides RF appropriate for study locations 
with a fragmented spatial distribution of  land 
use, as opposed to CART, which is appropriate 
for areas with a uniform distribution (Pan et al., 
2022).

Figure 3. Comparison of  Land Use Maps from GEE (RF classifier) with KLHK
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In addition, the land use map from Ma-
chine Learning RF is used as input data for the 
SWAT model. Compared to land use data from 
KLHK, the GEE land use map appears coarser 
and more detailed (Figure 3). There are standar-
dized land use classifications on the KLHK’s 
Land Use map, such as settlements associated 
with mixed gardens. 

DEM data is separated into two categories: 
the Digital Surface Model (DSM) and the Digital 
Terrain Model (DTM). DSM displays increased 
natural and built-up features on the Earth’s surfa-
ce. Meanwhile, DTM has bare Earth (Nemmaoui 
et al., 2019). Shawky et al. (2019) state that most 
global DEM datasets can be considered compro-
mises between DSM and SRTM. DEMNAS is 
included in the DTM used in this research.

Table 4. SWAT Models Compared based on 
DEM Data

DEM Basin (Km2) Sub-
basin

HRU

SRTM DEM 246.96 51 1092

DEMNAS 
DEM

239.44 53 2123

In the Rawa Pening Catchment Area, 
catchment delineation has been accomplished 
using DEM (SRTM and DEMNAS) data. The 
delineation procedure generates watershed and 
sub-watershed boundaries and river networks 
(Table 4). When the SRTM DEM and DEMNAS 
DEM are used to delineate the basin area, the re-
sults are marginally different. According to Table 
4, the SRTM-defined Rawa Pening Catchment 
Area has a larger area than the DEMNAS-defin-
ed basin. The difference in the area amounts to 
approximately 7,52 km2 or 1.03%.

Compared to the watershed boundary de-
rived from the Pemali Juana BBWS, the delinea-
ted watershed boundary of  the SRTM DEM and 
DEMNAS DEM has a different size and shape. 
The watershed boundary sourced from BBWS 
Pemali Juana has an area of  273.29 Km2, which 
is greater than the watershed boundary of  SRTM 
DEM and DEMNAS DEM. The watershed 
boundary of  the SRTM DEM has an intersected 
area of  89.8% against the watershed boundary of  
the BBWS Pemali Juana, while the DEMNAS 
DEM has an intersected area of  87.2%.

Figure 4. Comparison of  the Percentage Slope 
Area of    Watershed Delineation

HRU is the name given to the land unit 
created by the SWAT model, which represents 
an overlay of  soil type, land use, and slope gra-
dient in the Rawa Pening Catchment Area. The 
results of  the HRU creation provide information 
regarding land use, land, slope, area, and pro-
portion of  the watershed. The quantity of  HRU 
extracted differs between the two DEMs. SRTM 
DEM yielded 51 units of  HRU, while DEMNAS 
DEM generated 53 units. It obviously depends 
on the river’s morphology since the territory of  
each HRU is distinct. The broadest sub-basin in 
SRTM DEM is approximately 14,38 km2, whe-
reas the widest sub-basin in DEMNAS DEM is 
18,56 km2.

The slope product can be seen in Figure 
4. There are variations between the DEMNAS 
and SRTM slope sectors. This difference is due 
to the size and configuration of  the cells. Slope 
Area 0-8%, which is highly delicate, is mainly 
derived from SRTM, whereas Slope Area 8-25, a 
moderate and steep slope, is mainly derived from 
DEMNAS. In some hydrologic models, the slo-
pe derived from the DEM does not influence the 
output data (Buakhao & Kangrang, 2016).

To ascertain the level of  validity of  a 
model’s results, every model must undergo a va-
lidation test. Comparisons are made between the 
SWAT model’s discharge value and the AWLR 
discharge data to validate the model. The SWAT 
model’s discharge data is broken down into four 
groups, including land use data from GEE and 
KLHK and DEM data from DEMNAS DEM 
and SRTM DEM.

The outcomes of  model validation using 
R, R2, RMSE, and NSE indicate that Model A 
and Model B are the best SWAT models (Table 
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5). Model A is constructed using GEE and DEM-
NAS land use data, while Model B is constructed 
using GEE and SRTM DEM land use data. Mo-

del A performs exceptionally well compared to 
monthly data, while Model B performs exceptio-
nally well compared to daily data.

Table 5. SWAT Model Validation Results

Model
Daily Discharge Data Monthly Discharge Data

R R2 RMSE NSE R R2 RMSE NSE

Model A 0.46 0.21 10.23 -2.44 0.86 0.73 3.35 0.59

Model B 0.49 0.24 9.75 -2.12 0.86 0.73 3.43 0.58

Model C 0.45 0.20 10.43 -2.57 0.84 0.71 3.47 0.56

Model D 0.47 0.23 10.12 -2.36 0.85 0.71 3.57 0.53

The high-precision land use map is created 
using Machine Learning RF. Previous studies by 
Oo et al. (2022), Sundar and Deka (2022), and 
Arjasakusuma et al. (2020) assert that RF land 
use map is preferable to CART. RF can map mul-
ti-class land use, like this research so that it can 
accommodate minor classification differences 
(Sundar & Deka, 2022). The RF land use map 
is contrasted with other data in Model A, Model 
B, Model C, and Model D for SWAT modeling. 
The validation results suggest that Model A and 
Model B outperform other models.

Compared to DEMNAS, the SRTM-de-
rived model produces superior results compared 
to daily data. This may happen because SRTM, 
despite being a DSM, is derived from radar-de-
rived data that can penetrate the surface, passing 
through the vegetation cover, allowing the collec-
tion of  a more representative topography (Kara-
bulut & Özdemir, 2019). DEMNAS is generated 
by the assimilation of  IFSAR, TERRASAR-X, 
ALOS PALSAR, and MASS POINT data. Furt-
hermore, DEMNAS in the study area, Central 
Java Province, is not in the form of  DSM or 
DTM, although it appears to possess the same 
profile as DSM. In research about hydrological 
models, DTMs are more applicable than DSMs 
(Höfle et al., 2013; Shawky et al., 2019).

In contrast to the daily and monthly data, 
the model constructed from the land use data of  
GEE outperforms the KLHK data. This indica-
tes that the quality of  the land use map is more 
important than the quality of  DEM in SWAT 
modeling (Fan et al., 2021). To make the SWAT 
model more accurate in Indonesia, we advise 
utilizing high-quality land use data by emplo-
ying supervised classification following Machine 
Learning RF on GEE to obtain it. To decrease 
computation time, the DEM can be SRTM with 
a small loss of  precision. This research has seve-
ral limitations, such as not comparing the results 
of  other SWATs, such as sediment yield, total 
nitrogen, and groundwater flow (Sukumaran & 

Sahoo, 2020). Future work may be performed by 
enhancing the output compared. In addition, the 
data being compared are not limited to Land Use 
and DEM, as appropriate soil and meteorologi-
cal data play a significant role in SWAT mode-
ling (Tyagi et al., 2019; Krpec et al., 2020). Apart 
from that, further research also needs to compare 
the computation time of  each SWAT model be-
cause not all developing countries have the hard-
ware capable of  carrying out spatial modeling, 
such as SWAT, for watershed management. Some 
of  this future work is very useful for developing 
watershed management policies based on SWAT 
modeling that are more effective and efficient, es-
pecially for developing countries like Indonesia.

CONCLUSION

In this research, the comparison of  SWAT 
models was centered on land use and DEM data. 
The utilized Land Use and DEM data are both 
Open-Source and Free Access. The used land 
use data comes from the supervised classification 
process that uses machine learning at the GEE 
and the Ministry of  Environment and Forestry’s 
Land Use Data. For DEM data, DEMNAS and 
SRTM are used. The following are the results of  
this research: (1) Land Use mapping on GEE 
utilizes Machine Learning RF and CART. The 
accuracy test results indicate that the land use 
map derived from RF is accurate. The RF land 
use map is then utilized for SWAT modeling; (2)
The validation outcomes utilizing R, R2, RMSE, 
and NSE indicate that Model A (Land Use GEE 
and DEMNAS) and Model B (Land Use GEE 
and SRTM) are preferable to the other models in 
general. In Indonesia, we recommend utilizing 
high-quality data land use for SWAT modeling by 
employing supervised classification based on ma-
chine learning RF on GEE to acquire it. To dec-
rease computation time, the DEM can be SRTM 
with a small loss of  precision. 
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