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ABSTRACT

Normalized change is a familiar expression used to measure student’s improvement in physics education re-
search, including critical thinking skill improvement. A widely used standardized critical thinking test is the 
Cornell Critical Thinking Test. The CCTT scoring method, rights minus one-half  the number wrong, results from 
possible interval scores ranging from the negative minimum score to positive maximum score. The problem then 
arises in the use of  the normalized change in CCTT scores, particularly in the situation when the post-test score 
is worse than the pre-test score. We reveal the used equation deficiencies and demonstrate the mistakes made 
by undergraduate researchers, as well as suggesting a modified equation that can be used under the normalized 
change rationale, i.e. the ratio of  the gain or the loss of  the maximum possible gain or loss. Some frequently asked 
questions about normalized change are also discussed.
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INTRODUCTION

The expression of  normalized gain has 
been widely used in physics education research 
since it was first proposed by Hake (1998a). The 
normalized gain for treatment is defined as the 
ratio of  the actual gain G (refers to the difference 
between the post-test score and the pre-test score) 
to the maximum possible gain Gmax. The ‘Hake 
gain’ is used by instructors, who want to see how 
much conceptual learning their students achieve, 
and by researchers, who want to compare the dif-
ference in conceptual learning between groups 
exposed to different pedagogies (Lasry et al., 
2014; Hoelwarth et al., 2005; Potter et al., 2014;  
). It is also considered as a rough measure of  the 
effectiveness of  a course in promoting concep-
tual understanding (Hake, 1998a; 2002; Meltzer 

and Manivannan, 2002; Von Korff  et al., 2016; 
Berek et al., 2016), scientific literacy (Afriana et 
al., 2016; Khaeroningtyas et al., 2016) , and the 
effectiveness of  a course curriculum (Colt et al., 
2011), a developed learning material (Putra et al., 
2016; Triyuni, 2016), online homework system 
(Cheng et al., 2004), and studio physics format 
(Cumming et al., 1999; Sorensen et al., 2006; So-
rensen et al., 2011; Kohl & Kuo, 2012 ).

Along with the development of  physics 
education research, some limitations were found 
in Hake’s equation (see Marx and Cummings, 
2007). In particular, when the post-test score is 
worse than the pre-test score, the ‘Hake gain’ per-
mits ambiguous interpretation of  the result. For 
example, when the average pre-test score <Spre> 
on the certain exam is 90%, and the average post-
test score <Spost> on the same exam is 75%, it 
would give an average normalized gain <g> of  
–1,5 by using Eq. (1).
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This situation is often not understood well 
by undergraduate researchers. Regardless of  
whether or not they grasp the consideration of  
the difference in use the class-average normalized 
gain <g> and the average of  the single-student 
gains gave by Hake (1998), undergraduate resear-
chers tend to use the less appropriate equation, 
or they easily eliminate the anomaly data to 
simplify calculations. It certainly can lead to mi-
sinterpretation of  the students’ performance on 
the conceptual change after the instruction. Even 
an effective learning scenario by the experienced 
teachers might not improve student scores (Cum-
ming et al., 1999) or can produce the post-test 
score is less than the pre-test score. The latter has 
likely happened if  the students shift their correct 
answer of  the certain item in the pre-test into the 
incorrect answer of  the same item in the post-test, 
as reported by Lasry et al. (2014). 

This deficiency leads Marx and Cumming 
(2007) proposed a formula called as the norma-
lized change c to complete the ‘Hake gain’ equa-
tion. The normalized change measures all pos-
sible changes in students’ performance after the 
instruction with Eq. (2), where the post and pre 
refer to the student score out of  100%, respecti-
vely. In the situation where the post-test score is 
less than the pre-test score defined as the ratio of  
the loss to the maximum possible loss, measured 
by Eq. (2d). 

However, Eq. (2d) needs more attention 
when applying directly to the raw score, in par-
ticular case ranged from negative to positive sco-
res, such as a raw score of  The Cornell Critical 
Thinking Test (CCTT) level X and level Z (Ennis 
& Millman, 2005). One of  the recommended sco-
rings of  Ennis et al. (2005) for both level X and 
level Z test is a total score using the formula rights 
minus one-half  the number wrong. Therefore, le-
vel X test, for example, which has 76 items (inclu-
ding 5 sample items), then all the possible total 
scores ranged from –35.5 to 71. Consider a worst 
case (although it is impossible, only showing an 
ambiguous interpretation of  the result) in which 

the pre-test raw score is 71, and the post-test score 
is –35.5 on the CCTT level X. An undergraduate 
researcher using Eq. (2d) Would assign a norma-
lized change of  –1.5. It can make undergraduate 
researchers who are not aware of  this situation 
confuses or present a wrong data interpretation. 

This paper highlights the issue above as 
well as addresses some issues about normalized 
change (we prefer to use the term ‘normalized 
change c’ than ‘normalized gain g’ in this paper) 
in undergraduate educational research. There are 
some adequate and important points to be discus-
sed which often becomes frequently asked questi-
ons by an undergraduate educational researcher. 
This paper will help undergraduate researchers 
understand well the normalized change to avoid 
misinterpretation of  the data.

Outline of Previous Research
Houveland et al. (1949) introduced a pa-

rameter independently for measurement of  per-
centage change, who called g as the “effective-
ness index.” While Gery (1972) named g as the 
“gap-closing parameter.” Hake (1998a,b) in his 
large student survey of  mechanics test data for 
introductory physics courses, again familiarized 
g as the “normalized gain” expressed by Eq. (1) 
and Cohen et al. (1999) called g different than the 
others, namely “POMP − Percentage Of  Maxi-
mum Possible”.

In his study, Hake (1998) prefers to intro-
duce the class-average normalized gain <g> than 
the average of  the single-student gains gave to cha-
racterize a group’s improvement (see Hake, 1998 
for Hake’s considerations). Eq. (1) employs the 
average class pre-test and post-test scores for ob-
taining <g>, while gave utilizes the single-student 
gain g which characterizes an individual’s impro-
vement, as shown in Eq. (3), where pre and post 
refer to the student score out of  100%, respective-
ly. The comparison of  these two methods in cal-
culating the average g and how this comparison 
may be able making inference about how a group 
of  students has changed as a result of  instruction 
discussed carefully in Bao’s paper (2006).

The ‘Hake gain’ then became widely used 
equation by the instructors and the researchers, 
then Marx and Cummings (2007) found some 
limitations of  using g and <g>, as well as propo-
sing the calculation of  the normalized change c 
in Eq. (2). The normalized change also encom-
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passed all possible changes in student performan-
ces, including ‘the normalized loss’ situation for 
single-student loss, i.e. when the post-test score is 
worse than the pre-test score. Miller et al. (2010) 
stated that losses situation are fairly common in 
the classroom, but the reason behind these losses 
is still inconclusive whether it demonstrates ac-
tual conceptual losses or only lucky guess on the 
pre-test that became incorrect on the post-test. It 
may influence the conclusion that is drawn in a 
study, if  or not these losses take into account in 
data analysis.

RESULTS AND DISCUSSION

An Issue of Using c for CCTT
This issue comes from a case of  using c for 

the Cornell Critical Thinking Test, particularly 
when students show less performance in the post-
test than in the pre-test. It’s almost similar to the 
limitations of  using g and <g> previously addres-
sed by Marx and Cummings (2007). In this case, 
undergraduate researchers usually employ CCTT 
raw scores in analyzing student pre-test and post-
test score, as well as student individual’s impro-
vement. 

There are two significant deficiencies to 
Eq. (2d) when directly used to the raw score of  
CCTT, for example, level X test, that ranges from 
–35.5 to 71. Firstly, it has a normalized loss bias. 
Student’s positive pre-test scores exhibit an in-
correct maximum normalized loss, but negative 
pre-test scores instead indicate a positive sign of  
maximum normalized loss. If  a student with a 
pre - test score of  –4, which has the number right 
(NR) of  21 and the number wrongs (NW) of  50, 
it can achieve a maximum normalized loss of  
+7.9. Otherwise, if  a student with pre-test score 
of  6.5, which has NR of  28 and NW of  43, it 
can achieve a maximum normalized loss of  –6.5 
(coincidentally has the same magnitude with pre-
test score). Noted that a positive value of  c indica-
tes the positive change or normalized gain and a 
negative value of  c indicates the negative change 
or normalized loss. Hence, both examples ob-
viously wrong because the maximum normalized 
loss in both cases should assign the same value of  
–1. The last, Eq. (2d) produces a non-symmetric 
range of  scores which leads to misinterpretation 
of  the results, as shown by dashed line at the iso-
grams in Fig. (1a).

Responding the Issue
Since the main problem lies in the use of  

CCTT raw score ranged from the negative mini-
mum of  –35.5 to the positive maximum of  71, 

we suggest two reasonable approaches address 
this issue. Firstly, we should scale raw scores into 
percentages to match Eq. (2). The student’s raw 
score is converted by adding 35.5, then multiplied 
by 100 and divided by 106.5 (the range between 
–35.5 to 71). For example, a student whose raw 
score is –4 has a percentage score of  30% and 
whose raw score is 6.5 has a percentage score of  
39%.

Finally, if  we still set the raw score without 
converting into percentages, Eq. (2a, d) should be 
modified under a rationale the ratio of  the gain 
or the loss to the maximum possible gain or loss, 
while Eq. (2b, c) remains unchanged. A general 
expression of  normalized change in Eq. (2a, d) is 
modified as:

where pre and post refer to the pre-test and post-
test raw scores, as well as min and max, refer to 
the minimum and maximum raw scores. Eq. (4) 
can also be used to calculate the class average 
normalized change <c> if  pre and post are the 
averages of  student pre-test and post-test respec-
tively.  In CCTT case, min and max score are re-
spectively –35.5 and 71.  

These approaches eliminate the normali-
zed loss bias and shape in a symmetric range of  
scores as shown at the isograms for c in Fig. (1b, 
c). The normalized changes now range from –1 to 
+1. Consider a student whose the pre-test score is 
–4 (30%) or –6.5 (39%); it would have the same 
maximum possible normalized loss of  –1. An un-
dergraduate researcher is usually aware with Eq. 
(4a) for gain, but not with Eq. (4b) for loss.

 

(a)
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might then be aware their mistake when they en-
counter a case of  student #6, #10 and #11, that 
instead indicates a positive normalized change 
greater than 1. For example, student #6 with the 
pre-test score is –4.0 (30%) and the post-test sco-
re is –19.0 (15%) if  calculated using Eq. (2d), it 
yields results of  +3.75 and yields –0.48 using Eq. 
(4b). It certainly would give significantly different 
average normalized change c-ave, causing misinter-
pretation of  the results.

Table 1 also demonstrates a fairly small 
difference between <c> and c

-ave 
calculated using 

Eq. (4). The difference between these two sco-
res ranges at 5% for sample N≥20 (see footnote 
#46 in Hake, 1998). It indicates that the average 
single-student normalized change can also be an 
alternative to class-average normalized change. 
Marx and Cummings (2007) suggested the ave-
rage single-student normalized change as a more 
effective way to characterize the whole class imp-
rovement and reveal how a group of  students has 
changed after instruction (Bao, 2006). Finally, a 
suggested way to present a group’s improvement 
is to use the average single-student normalized 
change associated with the standard error of  the 
mean semc, calculated by the formula . Thus, the 
group’s improvement of  the illustrative example 
can be written as cave = 0.14 ± 0.16. The c-score 
can also be written in the form of  0-100 interval 
as 14 ± 16 (Cheng et al., 2004), which someti-
mes it is needed to represent data in a comparison 
graph effectively. This form often becomes one of  
the questions asked by the undergraduate stu-
dents in the educational research methodology.

Frequently Asked Questions
The most frequent question arises in un-

dergraduate research is about the divisions of  c-
score, comparison of  the average c-score between 
two different groups, and another use of  c-score.

Shifting the divisionsc-scores
There is a persistent belief  in the undergra-

duate research that the division of  ‘Hake gain’ 
(Hake, 1998) might not be shifted. Marx argues 
that depending on the test format, content area, 
assessment goals, and the specific sub-populati-
on, the divisions may shift1. Sometimes the divisi-
ons characterize definable shifts in understanding 
based on the test. Other times, though, the divi-
sions may be more arbitrary and only used as a 
means to succinctly communicate broad findings. 
If  we decide to shift these divisions, we should 
clearly define what these divisions represent and 
find reasons why we use other cut-off  levels.

In the case of  the Cornell Critical Thinking 

(b)

(c)

Figure 1. Lines of  equal c for various CCTT pre-
test and post-test raw score combinations, calcu-
lated (a) using Eq. (2d) for the loss and Eq. (4a) 
for the gain, (b) using Eq. (4), as well as (c) per-
centage score using Eq. (2).

An Illustrative Example of the CCTT scores
We present an illustrative example from 

student’s CCTT raw scores in Table 1 to de-
monstrate the problem and given approaches. 
The scores are randomly selected only to high-
light the differences between the usual approach 
used by undergraduate researchers and the pro-
posed approach.

Table 1 shows the differences between sing-
le-student normalized change scores, particularly 
when student post-test score is less than pre-test 
score. These differences usually are not aware of  
undergraduate researchers if  c-scores which cal-
culated using Eq. (2d) only within the interval 0 
to –1, such as the student #2, #8 and #9.  It is due 
to they understood that the maximum normali-
zed loss should be –1. Undergraduate researchers 
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Test, it doesn’t have the divisions of  c-scores to 
characterize the student’s critical thinking impro-
vement. Hence, it is free to make our own based 
on some external criteria. To set divisions, we 
need first to establish what the divisions mean 
and how we would measure them independent 
of  the test. It is free to make the argument as to 
where the divisions are if  we have evidence to af-
firm that our choices divide the test population in 
some meaningful way. One way to do that is base 
it on an analysis that compares test scores with 
some other measure, say interviews1. In other 
words, we try to ascertain that students who get a 
score above X have a reasonably good understan-
ding of  concept Y.

For example, the divisions of  c-score by 
Hake (1998) demonstrates the improvement ca-
tegory of  students’ conceptual understanding as 
an impact of  the active learning (in Hakes’s case 
is Interactive Engagement) that promotes concep-
tual understanding and problem-solving. There-
fore, it would be inappropriate to adopt Hake’s 

category into the increased critical thinking skills. 
Also, the divisions of  c-score depend on the cha-
racteristic of  the instrument and the populations 
where the instrument was measured.

Comparing two c-scores
Undergraduate researchers usually use 

mean difference test (t-test) to infer the differen-
ce between cave of  two groups, but the difficulty 
then arises the distribution of  the values of  c not 
always approximate a normal distribution. One 
potential way to solve this issue and compare c-
scores between groups exposed to different peda-
gogies is to look at the standard error of  the mean 
(Marx and Cummings, 2007). A slightly more 
sophisticated approach would be to calculate 
the standard error for the scores above the mean 
and then repeat for the scores below the mean. 
It would help highlight the possible non-normal 
distribution of  c-scores1. 

In details, when one calculates the stan-
dard error, there is a very basic formula that 

Table 1. An illustrative example of  fifteen pre-test and post-test scores and corresponding values of  
c calculated using Eq. (2) and Eq. (4) for each student, as well as the corresponding group average 
normalized change <c>, the average of  individual c (cave), standard deviation and standard error of  the 
mean for individual c’s. 

Student
Pre-test 

raw score
Post-test
raw score

c calculated using

Eq. (4a, 2d)* Eq. (4)

1 71.0 71.0

2 71.0 60.5 –0.15 –0.10

3 50.0 60.5 0.50 0.50

4 50.0 71.0 1.00 1.00

5 12.5 12.5 0.00 0.00

6 –4.0 –19.0 3.75 –0.48

7 33.5 54.5 0.56 0.56

8 39.5 33.5 –0.15 –0.08

9 44.0 23.0 –0.48 –0.26

10 –10.0 –35.5 2.55 –1.00

11 –14.5 –25.0 0.72 –0.50

12 39.5 60.5 0.67 0.67

13 33.5 66.5 0.88 0.88

14 –14.5 39.5 0.63 0.63

15 –35.5 –35.5   

Averages 24.40 29.20 0.81 0.14

<c> Eq. 
(4a)

0.10

Standard deviation of  the mean () 1.16 0.61

Standard error of  the mean () 0.30 0.16

*Eq. (4a) for the gain and Eq. (2d) for the loss
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incorporates the entire data set. So, out of  that 
calculation, it gets one number, the standard er-
ror (SE) which is reported as MEAN±SE. The 
assumption being that numbers that are used 
to calculate the SE are normal about the mean. 
However, c-scores are typically not normal about 
the mean. As such, we used to calculate the SE 
only using the numbers above the mean (call it 
“SE+”) and then do the second calculation with 
the numbers below the mean (call it “SE-”). Thus, 
we could report the mean as MEAN(+”SE+”,-
”SE-”). Once we have that mean with a range 
denoted by the upper and lower limits provided 
by MEAN+”SE+” and MEAN-”SE-,” we could 
compare that range to the range from other clas-
ses. If  the range of  standard errors for two set of  
courses does not overlap, one could claim that 
as evidence that, subject to the limitation of  the 
survey instrument, the two courses have different 
degrees of  learning. For example, if  two courses 
had c-scores 72±5 and 60±10, it would say there 
is no evidence that the instrument measured dif-
ference between those two populations.

However, one should be considered in the 
use of  c-score is the issues of  Performance Ceiling 
Effects (PCE) and a correlation between single-
student c and the pre-test score (Hake, 1998). 
The researchers tend to accept c-score without 
worrying about this issues from because it is assu-
med they are not large effects1. We should always 
check to make sure that ceiling effects or strong 
correlations are not heavily influencing the ana-
lysis.

Another use of  normalized loss
The normalized loss means negative nor-

malized change. Regardless the use of  c for the 
CCTT and based on the normalized change ratio-
nale, it can also be used to measure the effective-
ness of  an instruction to reduce misconception or 
a remedial instruction (Sriyansyah, 2015). Many 
previous types of  research struggle to identify the 
students who hold misconceptions (Wijaya et al., 
2016; Widarti et al., 2016), then reduce or reme-
diate those misconceptions (Taufiq, 2012).The c-
score formula, particularly Eq. (4b), has a great 
chance to be applied in such study to calculate 
the decreased number of  students who hold mis-
conceptions after instruction. This claim under 
rationale, i.e. the number of  students who have 
been reduced or remediate divided by the total 
number of  students that could have been reduced 
or remediate (the total number of  students who 
hold a misconception at the beginning of  the 
instruction).

CONCLUSION

We have revealed the mistakes made by 
undergraduate researchers when applying the 
normalized change in the CCTT raw scores, as 
well as suggesting a modified equation that eli-
minates normalized loss bias and shapes a sym-
metric range of c-scores. We have also discussed 
some frequently asked questions by the undergra-
duate educational researcher. We hope this paper 
help undergraduate researchers understand well 
the normalized change to avoid misinterpreta-
tion of  the data, particularly when applying the 
normalized change in case of  the Cornell Critical 
Thinking Test or the test which has interval score 
from the non-zero minimum score to the certain 
maximum score. It would also make a researcher 
or an educator to reconsider and involve the per-
formance of  the students who get ‘losses’ into 
data analysis to clearly infer the effectiveness of  
the different learning pedagogies.
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