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Abstract— High performance computing (HPC) is required for image processing especially for picture 

element (pixel) with huge size. To avoid dependence to HPC equipment which is very expensive to be 

provided, the soft approach has been performed in this work. Actually, both hard and soft methods offer 
similar goal which are to reach time computation as short as possible. The discrete cosine transformation 

(DCT) and singular values decomposition (SVD) are conventionally performed to original image by consider it 

as a single matrix. This will result in computational burden for images with huge pixel. To overcome this 

problem, the second order matrix has been performed as block matrix to be applied on the original image 

which delivers the DCT-SVD hybrid formula. Hybrid here means the only required parameter shown in 

formula is intensity of the original pixel as the DCT and SVD formula has been merged in derivation. Result 
shows that when using Lena as original image, time computation of the singular values using the hybrid 

formula is almost two seconds faster than the conventional. Instead of pushing hard to provide the 

equipment, it is possible to overcome computational problem due to the size simply by using the proposed 

formula.  
 

Keywords— digital image processing, discrete cosine transformation, huge image computing, singular values decomposition  

 

I. INTRODUCTION 

Inspired by the size of original images available on market 

today. The largest one could be 320 gig pixel which if printed 

in normal resolution the image would be 98 meters long and 

32  meters high! [1]. On the other hand, for digital image 

processing purpose, advancement in HPC equipment makes 

computation for that size of image is possible to be performed 

but very expensive cost, almost not possible for researchers to 

provide this advance technology by themselves. Alternatively, 

the soft approach is a good choice without the need to provide 

the equipment. The novelty itself is also widely open, for 

example in decomposing a digital image using conventional 

approach, computation of singular value would be equal to 

size of pixel which means more pixel more computation 

required. For the corresponding 320 gig pixel images as 

mentioned earlier, the number of singular values would be 

320 × 109  calculated by solving the 320  gig-order 

polynomial equation. This will result in computational burden. 

Instead of pushing hard to provide the equipment, this 

research focuses on the soft by looking inside the matrix to 

solve the computational problem. As a proof, computational 

problem on digital image processing could be found in many 

literatures, for example: complexity of decomposition matrix 

and its time computation [2], the cost of parallel computation 

for digital image processing [3], [4], and the effort to 

overcome the computational burden [5]. 

As solution, this research proposed to perform second-

order block matrix to overcome computational problem on the 

huge image. The expected performance is the proposed 

method could achieve a better time computation than the 

conventional, so if using computer with similar specification, 

the proposed computation will be faster than the conventional 

with similar accuracy. Actually, using block matrix for SVD 

computation is already provided by many literatures where 

number of the block depend on the size of original and 

watermark image, for example: some literatures used block 

matrix with size 4 × 4 [6], [7] while others prefer to use 8 × 8 

block matrix [8] - [11] or the higher one 16 × 16 [12] - [14]. 

Instead of the block, it is also possible to exploit low-high 

frequency band using discrete wavelet transformation to avoid 

the dependency [15] - [18]. Regarding this issue, the proposed 

method here is independent from the size although using 

original image blocking. Furthermore, it is also possible to 

expect computation with fastest computational time than the 

conventional because the lowest rank of matrix is second-

order. By using this order, computation of singular values will 

be the fastest than the conventional. Using the second order 

matrix as a block matrix is a novelty on this work. In addition 

to the novelty, the second-order block matrix is not only 

performed to the SVD but also to the DCT. This approach 

could not be found in any literatures for example in [20]. 

Before working on numeric, the analytical work has been 

done with aims to synthesize the hybrid formula to compute 

the DCT-SVD matrix numerically. On this hybrid formula, 

the DCT and zigzag function have been included on 

derivation so the only required parameter shown in the 

resulted formula is matrix element of the original image. This 

hybrid formula is our third novelty. 

II. METHOD 

For figuring what conventional methods do in computing 

the DCT and SVD formula, this section is started with 

delivering the algorithm, continued by stating the problem 
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and proposing solution. Conventionally, the original or host 

image is divided into square block matrix. Let, we have an 

original image with 𝑚 × 𝑚  square matrix. Matrix 

representation of the image is shown in Figure 1.  

[
 
 
 
 

𝐼(1,1) 𝐼(1,2)

𝐼(2,1) 𝐼(2,2)
⋯

𝐼(1,𝑚−1) 𝐼(1,𝑚)

𝐼(2,𝑚−1) 𝐼(2,𝑚)

⋮ ⋱ ⋮
𝐼(𝑚−1,1) 𝐼(𝑚−1,2)

𝐼(𝑚,1) 𝐼(𝑚,2)
⋯

𝐼(𝑚−1,𝑚−1) 𝐼(𝑚−1,𝑚)

𝐼(𝑚,𝑚−1) 𝐼(𝑚,𝑚) ]
 
 
 
 

𝑚×𝑚

 

Figure 1.  Matrix representation of image with size 𝑚 × 𝑚 

Refers to [20], the DCT and SVD are performed one by one 

which means the method is not a hybrid. The algorithm is as 

follows: 

1)  Applying DCT to the whole 𝑚 × 𝑚  original image 

with result is called DCT-transformed host image or 𝐼𝑑. 
 

 𝐼𝑑 =

[
 
 
 
 

𝐼𝑑(1,1) 𝐼𝑑(1,2)

𝐼𝑑(2,1) 𝐼𝑑(2,2)
⋯

𝐼𝑑(1,𝑚−1) 𝐼𝑑(1,𝑚)

𝐼𝑑(2,𝑚−1) 𝐼𝑑(2,𝑚)

⋮ ⋱ ⋮
𝐼𝑑(𝑚−1,1) 𝐼𝑑(𝑚−1,2)

𝐼𝑑(𝑚,1) 𝐼𝑑(𝑚,2)
⋯

𝐼𝑑(𝑚−1,𝑚−1) 𝐼𝑑(𝑚−1,𝑚)

𝐼𝑑(𝑚,𝑚−1) 𝐼𝑑(𝑚,𝑚) ]
 
 
 
 

 () 

 

2)  Taking zigzag manner to the DCT-transformed host 

image as follows: 

    𝑧=zigza𝑔(𝐼𝑑) () 
 

The result is called 𝐼𝑑𝑧 as follows: 
 

 𝐼𝑑𝑧 =

[
 
 
 
 
𝐼𝑑(1,1) 𝐼𝑑(1,2)

𝐼𝑑(2,1) 𝑰𝒅(𝟑,𝟏)
⋯

⋯ ⋯
⋯ ⋯

⋮ ⋱ ⋮
⋯ ⋯
⋯ ⋯ ⋯

𝑰𝒅(𝒎−𝟐,𝒎) 𝐼𝑑(𝑚−1,𝑚)

𝐼𝑑(𝑚,𝑚−1) 𝐼𝑑(𝑚,𝑚) ]
 
 
 
 

 () 

The bold shows the changing due to the zigzag. 

3)  Performing the SVD operation on 𝐼𝑑𝑧 with result as 

follows: 

   𝑈, 𝑆, 𝑉 = 𝑆𝑉𝐷(𝐼𝑑𝑧) () 
 

4)  Performing validation formula as follows: 

 𝐼 = 𝑈 × 𝑆 × 𝑉𝑇 () 

A. Problem 

Matrix representation of the huge image is also huge. The 

huge matrix implies that computation of singular values 

becomes huge as number of singular values will be equal to 

polynomial-order. For example, let 𝐼  is a matrix with size 

𝑛 × 𝑛, representing original image with 𝑛2 pixels. 

     Iimage =

[
 
 
 
 

I(1,1) I(1,2)

I(2,1) I(2,2)
⋯

I(1,n−1) I(1,n)

I(2,n−1) I(2,n)

⋮ ⋱ ⋮
I(n−1,1) I(n−1,2)

I(n,1) I(n,2)
⋯

I(n−1,n−1) I(n−1,n)

I(n,n−1) I(n,n) ]
 
 
 
 

 () 

To determine singular (𝜎) or Eigen (𝜆) values, determinant of 

matrix is required to equal to zero as follows: 

   𝑑𝑒𝑡 ([

𝐼(1,1) ⋯ 𝐼(1,𝑛)

⋮ ⋱ ⋮
𝐼(𝑛,1) ⋯ 𝐼(𝑛,𝑛)

] [

𝐼(1,1) ⋯ 𝐼(1,𝑛)

⋮ ⋱ ⋮
𝐼(𝑛,1) ⋯ 𝐼(𝑛,𝑛)

]

𝑇

− 𝜆𝐼𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦) = 0, () 

 

where the identity matrix (𝐼𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦) is 

   𝐼𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 =

[
 
 
 
 
 
 
1
0
0
⋮
⋮
0
0

   

0 
1
0
⋮
⋮
0
0

  

0
0
1
 
 
⋯
⋯

 

⋯ 
⋯ 
 
 ⋱
 
 
 

  

⋯
⋯
 
 
1
0
0

   

0
0
⋮
⋮
0
1
0

    

0
0
⋮
 ⋮ 
0
0
1

 

]
 
 
 
 
 
 

 () 

then (7) will result in polynomial equation as: 

   α0𝜆
𝑛 + α1𝜆

𝑛−1 + ⋯+ α𝑛−1𝜆 + α𝑛 = 0 () 

Equation (9) implies that computation will be performed to 

the 𝑛𝑡ℎ-order polynomial to determine 𝑛 numbers of singular 

values. For image with huge pixel, 𝑛 is limit to infinite (𝑛 →
∞), and the numbers of singular values as well. The impact is 

for original image with huge pixels, determining the singular 

values leads to computational burden, so special treatment 

should be carried out for example by reducing the order. This 

work proposes to exploit the simply second-order polynomial 

by performing the second-order block matrix to the original 

image. 

B. Solution 

To overcome the problem, performing block matrix with 

size 2 × 2 is taken. In this case, the matrix order will reduce 

from the original to the block size of matrix. The matrix order 

which is originally as function of 𝑛 → ∞ will move to only 

the second-order which means very easy to compute. For 

images with huge pixel, the following scheme is proposed. 

Let, 𝐼  represent the original image with size 𝑛 × 𝑛 . 

Performing the second-order block matrix to the original 

image matrix is simply as shown in Figure 2.   
 

[
 
 
 
 

𝐼(1,1) 𝐼(1,2)

𝐼(2,1) 𝐼(2,2)
⋯

𝐼(1,𝑛−1) 𝐼(1,𝑛)

𝐼(2,𝑛−1) 𝐼(2,𝑛)

⋮ ⋱ ⋮
𝐼(𝑛−1,1) 𝐼(𝑛−1,2)

𝐼(𝑛,1) 𝐼(𝑛,2)
⋯

𝐼(𝑛−1,𝑛−1) 𝐼(𝑛−1,𝑛)

𝐼(𝑛,𝑛−1) 𝐼(𝑛,𝑛) ]
 
 
 
 

 

Figure 2.  Performing the second-order block to the original 

To formulate the hybrid DCT-SVD with second-order 

block matrix, the following algorithm is performed refers to 

flow diagram as shown in Figure 4.   

1)  Transform the original image from spatial to frequency 

domain using the DCT with formula as follows: 
 

    

𝐼𝑑𝑐𝑡(𝑥, 𝑦) =
1

√2𝑁
𝛼(𝑢)𝛼(𝑣)∑ 𝑓(𝑥, 𝑦) cos(

(2𝑥+1)𝑢𝜋

2𝑁
) cos (

(2𝑦+1)𝑣𝜋

2𝑁
)𝑁−1

𝑥,𝑦=0

 

where 𝛼(𝑘) = {

1

√2
, for 𝑘 = 1

 
1, others

 () 

 

This formula is applied to each 2 × 2 block matrix as shown 

in Figure 3.   
 

[
 
 
 
 
 [

𝐼(1,1) 𝐼(1,2)

𝐼(2,1) 𝐼(2,2)
]
𝑑𝑐𝑡

⋯ [
𝐼(1,𝑛−1) 𝐼(1,𝑛)

𝐼(2,𝑛−1) 𝐼(2,𝑛)
]
𝑑𝑐𝑡

⋮ ⋱ ⋮

[
𝐼(𝑛−1,1) 𝐼(𝑛−1,2)

𝐼(𝑛,1) 𝐼(𝑛,2)
]
𝑑𝑐𝑡

⋯ [
𝐼(𝑛−1,𝑛−1) 𝐼(𝑛−1,𝑛)

𝐼(𝑛,𝑛−1) 𝐼(𝑛,𝑛)
]
𝑑𝑐𝑡]

 
 
 
 
 

 

 

Figure 3.  Performing DCT on each 2 × 2 block matrix 
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Figure 4.  The proposed algorithm 

2)  Perform zigzag function to all element of DCT matrix. 

As example, the zigzag operation for 4 × 4 matrix is shown in 

Figure 5.  

[
 
 
 
 
 
 
𝐼𝑑𝑐𝑡(1,1)

 
𝐼𝑑𝑐𝑡(2,1)

↓
𝐼𝑑𝑐𝑡(3,1)

 
𝐼𝑑𝑐𝑡(4,1)

  

→
↙
 
↗
 
↙
⟶

  

𝐼𝑑𝑐𝑡(1,2)

 
𝐼𝑑𝑐𝑡(2,2) 
𝐼𝑑𝑐𝑡(3,2)

 
𝐼𝑑𝑐𝑡(4,2)

  

 
↗
 
↙
 
↗
 

  

𝐼𝑑𝑐𝑡(1,3)

 
𝐼𝑑𝑐𝑡(2,3) 
𝐼𝑑𝑐𝑡(3,3)

 
𝐼𝑑𝑐𝑡(4,3)

  

⟶
↙
 
↗
 
↙
⟶

  

𝐼𝑑𝑐𝑡(1,4)

 
𝐼𝑑𝑐𝑡(2,4)

↓
𝐼𝑑𝑐𝑡(3,4)

 
𝐼𝑑𝑐𝑡(4,4)]

 
 
 
 
 
 

4×4

 

Figure 5.  Example of the zigzag operation 

 

The matrix will have new elements as follow: 

   𝐼𝑑𝑧 =

[
 
 
 
 
 
 
𝐼𝑑𝑐𝑡(1,1)

 
𝐼𝑑𝑐𝑡(2,1) 
𝑰𝒅𝒄𝒕(𝟑,𝟐)

 
𝑰𝒅𝒄𝒕(𝟒,𝟐)

    

𝐼𝑑𝑐𝑡(1,2)

 
𝑰𝒅𝒄𝒕(𝟑,𝟏) 
𝑰𝒅𝒄𝒕(𝟒,𝟏)

 
𝑰𝒅𝒄𝒕(𝟑,𝟑)

    

𝑰𝒅𝒄𝒕(𝟐,𝟐)

 
𝑰𝒅𝒄𝒕(𝟏,𝟒) 
𝑰𝒅𝒄𝒕(𝟐,𝟒)

 
𝐼𝑑𝑐𝑡(4,3)

    

𝑰𝒅𝒄𝒕(𝟏,𝟑)

 
𝑰𝒅𝒄𝒕(𝟐,𝟑) 
𝐼𝑑𝑐𝑡(3,4)

 
𝐼𝑑𝑐𝑡(4,4) ]

 
 
 
 
 
 

 () 

Where 𝐼𝑑𝑧 = 𝑓𝑧𝑖𝑔𝑧𝑎𝑔(𝐼𝑑𝑐𝑡), while the bold shows the changing 

in matrix element. 

3)  Before calculating singular values, the block matrix is 

performed to the DCT-transformed with zigzag matrix. For 

the 4 × 4 matrix, the result is shown in Figure 6 while for 

𝑛 × 𝑛 matrix shown in Figure 7.   

[
 
 
 
 
 
 
𝐼𝑑𝑐𝑡(1,1)  𝐼𝑑𝑐𝑡(1,2)

 Block 1  
𝐼𝑑𝑐𝑡(2,1)  𝐼𝑑𝑐𝑡(3,1)

 

𝐼𝑑𝑐𝑡(2,2)  𝐼𝑑𝑐𝑡(1,3)

 Block 2  
𝐼𝑑𝑐𝑡(1,4)  𝐼𝑑𝑐𝑡(2,3)   

𝐼𝑑𝑐𝑡(3,2)  𝐼𝑑𝑐𝑡(4,1)

 Block 3  
𝐼𝑑𝑐𝑡(4,2)  𝐼𝑑𝑐𝑡(3,3)

 

𝐼𝑑𝑐𝑡(2,4)  𝐼𝑑𝑐𝑡(3,4)

 Block 4  
𝐼𝑑𝑐𝑡(4,3)  𝐼𝑑𝑐𝑡(4,4)]

 
 
 
 
 
 

4×4

 

Figure 6.  Performing the block to the zigzag matrix with size 4 × 4 

   

[
 
 
 
 
 
 
𝐼𝑑𝑐𝑡(1,1)  𝐼𝑑𝑐𝑡(1,2)

 Block 1  
𝐼𝑑𝑐𝑡(2,1)  𝐼𝑑𝑐𝑡(3,1)

⋯

⋯  ⋯
 Block ⋯  
⋯  ⋯

⋮ ⋱ ⋮            
⋯  ⋯
 Block ⋯  
⋯  ⋯

⋯

𝐼𝑑𝑐𝑡(𝑛−2,𝑛)  𝐼𝑑𝑐𝑡(𝑛−1,𝑛)

 Block N  
𝐼𝑑𝑐𝑡(𝑛,𝑛−1)  𝐼𝑑𝑐𝑡(𝑛,𝑛) ]

 
 
 
 
 
 

𝑛×𝑛

 

 

Figure 7.  Performing the block to the zigzag matrix with size 𝑛 × 𝑛 

The singular values are calculated using the following 

formula: 

          

𝑑𝑒𝑡[𝐼𝑑𝑧(𝑥, 𝑦)𝐼𝑑𝑧
𝑇 (𝑥, 𝑦) − 𝜆𝑢,𝑣𝐼] = 0

𝑤ℎ𝑒𝑟𝑒  𝐼𝑑𝑧 = 𝑓𝑧𝑖𝑔𝑧𝑎𝑔(𝐼𝑑𝑐𝑡)
 () 

Singular values for each block are determined by solving 

second-order polynomial as follows: 

   α0𝜆
2 + α1𝜆 + α2 = 0 () 

4)  To determine vector U and V, solve the following 

Eigen vector formula: 

   (𝐼𝑑𝑧(𝑥, 𝑦)𝐼𝑑𝑧
𝑇 (𝑥, 𝑦) − 𝜆𝑢,𝑣𝐼)𝜑̅ = 0 () 

 

5)  The taken vectors U and V from (14) are dependent 

variables. In order to obtain independent variable, it is 

required to performed the orthogonal formula as follows: 

           
𝑈(𝜑̅)𝑈𝑇(𝜑̅) = 1

𝑉(𝜑̅)𝑉𝑇(𝜑̅) = 1

 () 

 

6)  By solving (15), the result is obtained. 

7)  Validate the result by performing the following 

formula. 

           𝐼 = 𝑈𝑆𝑉𝑇 () 

Matrices U and V refer to decomposition matrix, while 

matrices S and I are singular and original matrix respectively. 

As summary for this section, Table I is presented. 

I=

[
 
 
 
 

𝐼(1,1) 𝐼(1,2)

𝐼(2,1) 𝐼(2,2)
⋯

𝐼(1,𝑛−1) 𝐼(1,𝑛)

𝐼(2,𝑛−1) 𝐼(2,𝑛)

⋮ ⋱ ⋮
𝐼(𝑛−1,1) 𝐼(𝑛−1,2)

𝐼(𝑛,1) 𝐼(𝑛,2)
⋯

𝐼(𝑛−1,𝑛−1) 𝐼(𝑛−1,𝑛)

𝐼(𝑛,𝑛−1) 𝐼(𝑛,𝑛) ]
 
 
 
 

  

 
 
 

𝐼𝑑𝑐𝑡(𝑥, 𝑦) =
1

√2𝑁
𝛼(𝑢)𝛼(𝑣)∑ 𝑓(𝑥, 𝑦) cos (

(2𝑥+1)𝑢𝜋

2𝑁
)cos (

(2𝑦+1)𝑣𝜋

2𝑁
)𝑁−1

𝑥,𝑦=0

 

where: 𝛼(𝑘) = {

1

√2
, for 𝑘 = 1

 
1, others

  

𝑓zigzag(𝐼𝑑𝑐𝑡) =

[
 
 
 
 
𝐼(1,1) 𝐼(1,2)

𝐼(2,1) 𝑰(𝟑,𝟏)
⋯

⋯ ⋯
⋯ ⋯

⋮ ⋱ ⋮
⋯ ⋯
⋯ ⋯ ⋯

⋯ ⋯
⋯ 𝐼(𝑛,𝑛)]

 
 
 
 

  

𝑑𝑒𝑡[𝐼𝑑𝑧(𝑥, 𝑦)𝐼𝑑𝑧
𝑇 (𝑥, 𝑦) − 𝜆𝑢,𝑣𝐼] = 0 → Eigen Values  

𝑈(𝜑̅)𝑈𝑇(𝜑̅) = 1
 

𝑉(𝜑̅)𝑉𝑇(𝜑̅) = 1
}  Orthogonal 

1 

(𝐼𝑑𝑧(𝑥, 𝑦)𝐼𝑑𝑧
𝑇 (𝑥, 𝑦) − 𝜆𝑢,𝑣𝐼)𝜑̅ = 0 → Eigen Vector  

𝑈(𝜑̅)
 

𝑉(𝜑̅)
} = 𝑓𝑧𝑖𝑔𝑧𝑎𝑔(𝐼𝑑𝑐𝑡) with 2𝑛𝑑-order block matrix 

Validation: 𝐼 = 𝑈𝑆𝑉𝑇 

2 

3 

4 

5 

6 

7 
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TABLE I.    COMPARISON OF THE METHOD 

No 
Comparison of the Method 

Conventional SVD Proposed SVD 

1. Solving the 𝑛𝑡ℎ  order 

polynomial equation to 

obtain  𝑛 singular values 

Solving the 2𝑛𝑑  order 

polynomial equation to 

obtain  𝑛 singular values 

2. Calculate Eigen vector for 

the huge matrix  𝑛 × 𝑛 

Calculate Eigen vector for 

corresponding 2 × 2 matrix. 

3. Computational burden Light computation 

III. RESULTS AND DISCUSSION 

 This section is started with delivering the hybrid formula 

as result of the analytical works, continued by validating the 

formula numerically using the original or host digital image. 

Its performance then being compared to the conventional in 

term of time computation. The following formula is delivered 

by performing the step-by-step works which is already 

explained in previous section. 

   𝑈 =

[
 
 
 
 

𝑈(1,1) 𝑈(1,2)

𝑈(2,1) 𝑈(2,2)
⋯

𝑈(1,𝑛−1) 𝑈(1,𝑛)

𝑈(2,𝑛−1) 𝑈(2,𝑛)

⋮ ⋱ ⋮
𝑈(𝑛−1,1) 𝑈(𝑛−1,2)

𝑈(𝑛,1) 𝑈(𝑛,2)
⋯

𝑈(𝑛−1,𝑛−1) 𝑈(𝑛−1,𝑛)

𝑈(𝑛,𝑛−1) 𝑈(𝑛,𝑛) ]
 
 
 
 

 () 

   𝑉 =

[
 
 
 
 

𝑉(1,1) 𝑉(1,2)

𝑉(2,1) 𝑉(2,2)
⋯

𝑉(1,𝑛−1) 𝑉(1,𝑛)

𝑉(2,𝑛−1) 𝑉(2,𝑛)

⋮ ⋱ ⋮
𝑉(𝑛−1,1) 𝑉(𝑛−1,2)

𝑉(𝑛,1) 𝑉(𝑛,2)
⋯

𝑉(𝑛−1,𝑛−1) 𝑉(𝑛−1,𝑛)

𝑉(𝑛,𝑛−1) 𝑉(𝑛,𝑛) ]
 
 
 
 

 () 

where: 

   𝑈(𝑛−1,𝑛−1) =
−(𝐼𝑑𝑧(𝑛−1,𝑛−1)𝐼𝑑𝑧(𝑛,𝑛−1)+𝐼𝑑𝑧(𝑛−1,𝑛)𝐼𝑑𝑧(𝑛,𝑛))

√(𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 +𝐼𝑑𝑧(𝑛−1,𝑛)

2 −𝜎1
2)(𝜎2

2−𝜎1
2)

 () 

   𝑈(𝑛−1,𝑛) = √
𝜎1

2−𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 −𝐼𝑑𝑧(𝑛−1,𝑛)

2

𝜎1
2−𝜎2

2  () 

   𝑈(𝑛,𝑛−1) =
𝐼𝑑𝑧(𝑛−1,𝑛−1)𝐼𝑑𝑧(𝑛,𝑛−1)+𝐼𝑑𝑧(𝑛−1,𝑛)𝐼𝑑𝑧(𝑛,𝑛)

√(𝜎1
2−𝐼𝑑𝑧(𝑛−1,𝑛−1)

2 −𝐼𝑑𝑧(𝑛−1,𝑛)
2 )(𝜎1

2−𝜎2
2)

 () 

   𝑈(𝑛,𝑛) = √
𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 +𝐼𝑑𝑧(𝑛−1,𝑛)

2 −𝜎1
2

𝜎2
2−𝜎1

2  () 

   𝑉(𝑛−1,𝑛−1) =
−(𝐼𝑑𝑧(𝑛−1,𝑛−1)𝐼𝑑𝑧(𝑛−1,𝑛)+𝐼𝑑𝑧(𝑛,𝑛−1)𝐼𝑑𝑧(𝑛,𝑛))

√(𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 +𝐼𝑑𝑧(𝑛,𝑛−1)

2 −𝜎2
2)(𝜎1

2−𝜎2
2)

 () 

 

   𝑉(𝑛−1,𝑛) = √
𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 +𝐼𝑑𝑧(𝑛,𝑛−1)

2 −𝜎2
2

𝜎1
2−𝜎2

2  () 

   𝑉(𝑛,𝑛−1) =
𝐼𝑑𝑧(𝑛−1,𝑛−1)𝐼𝑑𝑧(𝑛−1,𝑛)+𝐼𝑑𝑧(𝑛,𝑛−1)𝐼𝑑𝑧(𝑛,𝑛)

√(𝜎1
2−𝐼𝑑𝑧(𝑛−1,𝑛−1)

2 −𝐼𝑑𝑧(𝑛,𝑛−1)
2 )(𝜎1

2−𝜎2
2)

 () 

   𝑉(𝑛,𝑛) = √
𝜎1

2−𝐼𝑑𝑧(𝑛−1,𝑛−1)
2 −𝐼𝑑𝑧(𝑛,𝑛−1)

2

𝜎1
2−𝜎2

2  () 

A. Validation 

For numerical validation purpose, the following original 

Lena image has been used. 

 
 

Figure 8.  The original Lena image 

Converting the RGB to the greyscale image will change 

Figure 8 to Figure 9 with matrix representation shown in (27). 

 

Figure 9.  Greyscale of the image 

   𝐼𝑖𝑚𝑎𝑔𝑒 =

[
 
 
 
 
161 162
162 163

⋯
155 127
157 128

⋮ ⋱ ⋮
43 47
43 48

⋯
106 111
102 110]

 
 
 
 

512×512

 () 

The following pseudo-codes shown in Figure 10 have been 

performed to the original image. By running the codes, 

multiplication of 𝑈 × 𝑆 × 𝑉𝑇 is achieved as follows: 

   𝑈 × 𝑆 × 𝑉𝑇 =

[
 
 
 
 
161 162
162 163

⋯
155 127
157 128

⋮ ⋱ ⋮
43 47
43 48

⋯
106 111
102 110]

 
 
 
 

512×512

 () 

Multiplication of SVD matrix in (28) is absolutely the same 

with the original image as shown in (27), this means the 

required validation has been achieved and (17) to (26) is valid 

numerically, also prove that the idea of using second-order 

matrix as block matrix is also valid. 
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Figure 10.  The pseudo-codes 

B. Performance Analysis 

After validating the formula analytically and numerically 

as describe in previous section, the next step is measuring its 

performance which is measured by calculating time 

computation for the hybrid and for the conventional. The 

comparison result is reported in Table II. 

TABLE II.   COMPARISON OF TIME COMPUTATION 

Measured Parameter 
Time Computation (seconds) 

Conventional  Proposed  

Singular Values (S) 2.100781 0.206700 

Decomposition Matrix (U, V) 2.547371 2.145800 

The result shows that time computation for DCT-SVD 

using the hybrid formula to determine decomposition matrix 

(U, V) is faster than the conventional and the singular values 

as well. The explanation is as follow: comparison of DCT-

SVD computation between the conventional and the proposed 

method means comparing the conventional algorithm 

presented by (1) to (5) to the proposed algorithm as shown in 

Figure 4. In this context, we would like to know which one is 

faster, is it computation of a single matrix with 𝑛𝑡ℎ-order or 𝑛 

times loop of the 2𝑛𝑑-order block matrix, and the answer is 

the last one. For the singular values, the conventional 

computes (9) while the proposed method computes (13) as 

reported in Table III. It makes sense that computing second-

order polynomial equation is faster than the n-order. In 

addition to the results, Table IV shows performance of the 

optimized hybrid DCT-SVD computation over different 

original images. 

 

 

 

TABLE III.   COMPARISON OF THE EQUATION 

Equation of the singular values 

The Conventional The Proposed 

α0𝜆
𝑛 + α1𝜆

𝑛−1 + ⋯ α0𝜆
2 + α1𝜆 + α2 = 0 

                 +α𝑛−1𝜆 + α𝑛 = 0  

TABLE IV.   TIME COMPUTATION FOR DIFFERENT IMAGES  

No 
Original image with size 

512×512 

Time computation 

(seconds) 

Conventional  Proposed  

1. 

 
Zelda 

2.550163 2.158441 

2. 

 
Boat 

2.523884 2.126979 

3. 

 
Barbara 

2.477470 2.094580 

4. 

 
Baboon 

2.459073 2.072076 

While for images with higher resolution, the performance 

can be found in Table V. By comparing its time computation, 

difference between the conventional and proposed method 

applied for the picture with size 512×512, 1024×1024, and 

2048×2048 are approximately 0.4 seconds, 2 seconds, and 10 

seconds respectively. This means the time computation will 

continue to rise with 5 times slower when the resolution 

increased two times. So we can predict that the difference 

could be 50 seconds for the image with 4096×4096 pixel, 250 

seconds for the image with 8192×8192, and so on. This 

means for the extremely large image, the proposed method 

will be extremely faster than the conventional. 
  

1. Input: the original image 

≫ Read the 𝑛 × 𝑛 matrix element of the image 

2. Loop: to compute the DCT, to zigzag the DCT values, 

and to compute singular values and SVD matrix in a 

single loop. 

≫ For first to 𝑛𝑡ℎ  matrix element of original matrix 

do: 

 ≫ Set a blank cell with 2 × 2 block matrix 

 ≫ For each block do: 

          ≫ Address 1 to 2 rows every time 

          ≫ Address 1 to 2 Columns every time 

          ≫ Read element matrix for each block 

          ≫ Compute DCT values 

          ≫ Apply zigzag function 

      END FOR 

 ≫ Get the DCT-transformed zigzag matrix 

 ≫ For the DCT-transformed zigzag matrix do: 

          ≫ Set a 2 × 2 block matrix 

          ≫ Compute 2𝑛𝑑-order singular values 

                  ≫ Compute matrix 𝑈  and 𝑉  using the       

formula 

      END FOR 

     END FOR 

3. Output: to get matrix 𝑈, 𝑆, and 𝑉, including validation 

≫ Get the SVD matrix 

≫ Calculate 𝐼 = 𝑈 ∗ 𝑆 ∗ 𝑉𝑇 for validation 
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TABLE V.   TIME COMPUTATION FOR HIGH RESOLUTION IMAGES  

No Original Image 

Time computation 

(seconds) 

Conventional  Proposed  

1. 

 
Size: 512×512 

2.547371 2.145800 

2. 

 
Size: 1024×1024 

12.918915 10.865629 

3. 

 
Size: 2048×2048 

57.942025 47.151266 

IV. CONCLUSION 

The hybrid DCT-SVD formula has been carried out by 

performing the second-order block matrix to the DCT-SVD, 

and validated numerically using digital image. Its 

performance is determined by comparing time computation 

between the conventional and proposed method. With this 

reduced size of matrix, time computation of the 

decomposition matrix is comparable but with faster 

computation of singular values. This means the research 

objective which is to reach time computation as short as 

possible for the singular values has been achieved. For further 

work, improving time computation of decomposition matrix 

using this hybrid formula is open to be researched.   
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