
Jurnal Teknik Elektro Vol. 14 No. 1 2022 P-ISSN 1411-0059 | E-ISSN 2549-1571

Received 25 March 2022, Accepted 15 June 2022, Published 27 June 2022.

DOI: https://doi.org/10.15294/jte.v14i1.35787

1

A Minimum Error-Based PCA for Improving

Classifier Performance in Detecting Financial Fraud
Bayu Nur Pambudi1, Silmi Fauziati2, and Indriana Hidayah2*

 1Financial Transaction Reports and Analysis Center

Jl. Ir. Haji Juanda No.35, Jakarta, 10120, Indonesia
2Department of Electrical and Information Engineering, Universitas Gadjah Mada

Jl. Grafika No. 2, Yogyakarta, 55281, Indonesia
*Corresponding author. Email: indriana.h@ugm.ac.id

Abstract— The main challenge of data mining approaches to detect fraud in financial transaction data is the

imbalance of data classes in available datasets, with a much smaller fraud class proportion than the non-fraud.

This imbalance affects the f1-score to be low due to imbalanced precision and recall. Therefore, the model can
predict one class well, but it does not apply to another class. In addition, the lengthy training time duration

and high computational resource requirements in implementing data mining also make them a particular

concern. Therefore, solely handling imbalanced data is still insufficient to produce the expected performance.

Reduction of data dimensions can be a solution to increase the speed of the process. However, this method

actually reduces the classifier’s performance when it comes to classification. Furthermore, this study intends

to improve the performance of the data mining approach based on the Support Vector Machine (SVM) classifier
aiming at detecting financial fraud transactions. The SVM performance was refined by tuning the kernel and

hyperparameter integrated with the Random Under Sampling (RUS) and our Minimum error-based Principal

Component Analysis (MebPCA). The RUS was used to handle imbalanced data, while MebPCA modified data

dimension reduction techniques based on classification errors to speed up computational time without

disturbing the performance of SVM. This combination improves the classifier's performance in detecting fraud

effectively with a precision improvement of 29.31% and f1-score of 19.8%, and efficiently reduces the duration
of training time significantly by 36.39% compared to previous research regarding the SVM method for fraud

detection.

Keywords— data mining; financial fraud detection; MebPCA; RUS; SVM

I. INTRODUCTION

This research is motivated by the fact that money laundering

is classified as a transnational and extraordinary crime. Thereby,

it becomes a serious threat to financial institutions as well as

the political and economic stability of a country [1]. Fraudsters

are constantly working on developing their approaches to

exploit the vulnerabilities of current money laundering

countermeasures, many of which target the financial sector [2].

In this case, Anti Money Laundering is an important

significance for world monetary stability.

The main indication of money laundering is a fraudulent or

suspicious transaction in which the transaction does not have a

clear business purpose and is carried out outside the usual

transaction pattern. Traditional or manual approaches to Anti

Money Laundering include identification through Customer

Due Diligence, detection by Transaction Analysts, prevention

by anti-money laundering socialization, and monitoring by the

Supervisory and Regulatory Institution. The transactional

banking data volume that continues to increase has caused these

approaches to be no longer optimal because the opportunity for

manual fraud detection has become increasingly inaccurate due

to fatigue and hassles of transaction analysts as humans [3].

Data mining techniques are needed to help the transaction

analysts work faster, more effectively, and efficiently. However,

there are problems in implementing data mining for fraud

detection, including imbalanced datasets [4], data mining

methods and metrics that are very sensitive to imbalanced data

[5], long training time duration, and high computational

resource requirements in applying data mining. The handling

of imbalanced data, selecting appropriate metrics [6], and

choosing the data dimension reduction method with

adjustments for classification can help improve classifier

performance [7].

Our study utilized the PaySim Dataset, a dataset of non-real

financial transactions that has been generated from simulations

in the study [8]–[10]. The PaySim dataset produced by these

studies was imbalanced, with the proportion of fraud and non-

fraud classes being far from equal. Hence, it could not be

directly implemented in the data mining process and this

imbalance needs to be handled to produce the expected

performance. Several previous studies have used Paysim

Dataset for fraud detection, including [5], [8]–[12].

Various resampling techniques such as Random Over

Sampling (ROS), Synthetic Minority Over-sampling

Technique (SMOTE), and Random Under Sampling (RUS)

have been compared to handle imbalanced datasets [13], but

neither method was significantly better because it would

depend on the degree of the dataset imbalance.

Handling imbalanced datasets alone is not sufficient to

produce the expected performance [14]. The SVM classifier

has been chosen in our study because fraud detection is a binary

classification problem so the SVM concept fits well. It is also

supported by the results of the SVM classification in previous

studies [5] and [12], which, despite its insignificancy, are better

than other methods. However, some parts were still

2 Jurnal Teknik Elektro Vol. 14 No. 1 2022

unperformed in studies [5] and [12]. Several issues have not

been handled in the previously proposed classification method,

i.e., imbalanced data as well as Kernel and SVM

hyperparameter tunings. Both of these are part of the main

concern of our research so that this research is important in

improving the performance of SVM.

Improving SVM performance can also be done by

evaluating the dimensions of the datasets through the Principal

Component Analysis (PCA) approach. Studies [15]–[17] show

how dimension reduction approaches in improving engine

performance. Nevertheless, when it comes to pattern

recognition, such as face recognition or even fraud detection,

modification techniques based on subspace similarity in [15],

multilevel approach in [16], and feature extraction in [17] may

still mix elements of data. For example, when recognizing a

human face with and without a mustache, there can be

confusion in getting the right density of a certain face area, as

the false positive that occurred in the case of fraud detection.

Reducing data dimensions using PCA can be a solution to

increase process speed. However, this method actually reduces

the performance of the classifier in terms of classification.

Therefore, PCA implementation must go through a scalable

approach.

This research continues previous study [11] in which tuned

Support Vector Machine (SVM) was combined with Random

Under Sampling (RUS) to increase the classifier’s performance

for fraud detection purposes. The study [11] results have shown

a significantly improved performance in precision of 40.82%

and f1-score of 22.79% compared to previous work in research

[5]. However, this previous research [11] still left a problem

with the lengthy duration of model training. Our research

intends to improve previous models’ performance by

combining the previous method [11] with Minimum error-

based Principal Component Analysis (MebPCA) to reduce

training time without reducing model performance. This is very

important regarding the effectiveness of classifiers and

resource efficiency.

Improving the performance of SVM in classifying fraud and

non-fraud instances is the main objective of this research. This

SVM performance improvement is achieved by tuning the

kernel and hyperparameters integrated with RUS and our

MebPCA. This combination has implications for the classifier's

ability to detect fraudulent transactions on imbalanced financial

transaction datasets effectively with increased precision and f1-

scores, as well as efficiently reducing training time duration

significantly. This article will further elaborate on the model for

financial fraud detection, Paysim Dataset, how SVM tuning is

done and how to balance imbalanced data, MebPCA, and what

metrics are suitable for evaluating imbalanced data.

II. METHOD

This section describes the optimization of the model,

starting with the proposed model for financial fraud detection,

then the dataset used is explained in the "PaySim Dataset"

subsection. How to handle imbalanced data in PaySim Dataset

and tune the classifier will be discussed in the “Imbalanced

Data Handling and SVM Parameters Tuning” subsection. Next,

Minimum error-based PCA and Minimum Classification Error

are proposed as approaches to improve classifier efficiency and

performance. Classifier performance is then measured in terms

of metrics discussed in the "Metrics for Evaluating Imbalanced

Data" subsection.

A. Financial Fraud Detection Model

The proposed system model for detecting financial fraud is

shown in Figure 1. In Figure 1, stratified sampling is applied to

split the dataset into 70% train set and 30% test set.

Stratified sampling aims to maintain the data generated

from the dataset separation represents the same proportion of

each class as in the initial dataset. Figure 1 shows that

preprocessing is applied to the train data first, then RUS is used

to balance the class between fraudulent and non-fraudulent

transactions. This process shortens model training time and

degrades model performance. Performance degradation is then

Figure 1. Proposed model for financial fraud detection

Jurnal Teknik Elektro Vol. 14 No. 1 2022 3

overcome by tuning in SVM parameters using 5-fold cross-

validation. In this 5-fold cross-validation, the dataset is divided

into 4 subsets of train data and 1 subset of test data, which is

done 5 times, with each piece of data having the opportunity to

become a test set.

The tuning results were then combined with MebPCA.

Specifically, MebPCA modified the technique of reducing data

dimensions based on the minimum classification error. This

approach cuts the duration of model training time and maintains

SVM performance. Furthermore, the results of the training

were stored as a classifier model in the knowledge base for the

prediction of test sets, whether as normal transactions or

suspicious transactions.

The combination scheme of RUS+Tuned_SVM+MebPCA

in extracting features can be seen in Figure 2. RUS forms a

balanced data class (instance) by freezing minority class (fraud)

and randomly taking majority class (non-fraud) as much as

fraud class data. Balanced instances optimized training and

reduced model training time due to a reduction of majority

instances. Classifiers worked best when the majority and

minority classes were rebalanced [4]. While MebPCA reduced

the data dimensions data by considering the value of

classification errors using the Tuned SVM Classifier.

The classification error value for each N component was

calculated, and then the smallest classification error value was

taken. N components with the smallest classification error were

used for classification because a small classification error value

did not interfere with the classifier's performance. Thus, this

MebPCA sped up computing time and maintained SVM

performance.

Figure 2. RUS+Tuned_SVM+MebPCA in extracting features

B. PaySim Dataset

The research material used in this study is PaySim Dataset,

which has been obtained from https://www.kaggle.com/ntnu-

testimon/paysim1. The PaySim is imbalanced data, with the

proportion of fraud and non-fraud classes being far from equal.

Hence, it could not be directly implemented in the data mining

process to produce the expected performance, so this imbalance

needs to be handled first. This dataset has 6.3 million

transactions distributed in various transaction types, as shown

in Figure 3.

Fraudulent transactions are only found in Transfer and

Cash-out transactions with a less than 1% fraud distribution, so

the proportion of fraud is much smaller than non-fraud. Table I

shows the detail about this distribution. The use of a public

dataset in this study due to the difficulty in obtaining real

banking transaction data because of bank secrecy law

provisions. In this study, only the Transfer transaction type was

used to test the proposed model.

Figure 3. Transaction distribution in PaySim Dataset

TABLE I. FRAUD DISTRIBUTION IN PAYSIM DATASET

No
Type of

Transactions
Non-Fraud Fraud Total Records

1. TRANSFER 528,812 4,097 532,909

2. PAYMENT 2,151,494 0 2,151,494

3. DEBIT 41,432 0 41,432

4. CASH-IN 1,399,284 0 1,399,284

5. CASH-OUT 2,233,384 4,116 2,237,500

C. Imbalanced Data Handling and SVM Parameters Tuning

This study controls class imbalance on the PaySim Dataset

with RUS by freezing minority instances (fraud) and randomly

taking majority instances (non-fraud) as much as minority

instances to establish balanced instances between fraud and

non-fraud classes. Balanced classes avoid underfit or overfit to

get an optimal training model [18]. Reducing most instances in

RUS speeds up model training time and risks eliminating useful

information that can degrade model performance.

SVM was used to find the best hyperplane as a function

separating fraud and non-fraud instances in the input space.

This hyperplane was represented as the kernel, determined by

measuring the hyperplane’s margin and finding its maximum

point [19]. SVM parameters tuning aimed to select the kernel

and hyperparameter to obtain the value combination producing

the best precision and recall based on the cross-validation

results on the train set. Kernel selection was applied to the

linear, polynomial, radial basis function (RBF), and sigmoid

kernel. Meanwhile, hyperparameter selection in this study was

performed only on gamma (ɤ) and C parameters. These

parameters tuning would improve the classifier’s performance

which was down due to the implementation of RUS.

The kernel functions commonly used in the SVM method

are linear, RBF, polynomial, and sigmoid. Mathematically, the

linear kernel can be represented as follows:

 𝐾(𝑋, 𝑌) = 𝑋𝑇𝑌 ()

where X is input instance, XT is transpose X, and Y is output

instance. While the polynomial kernel is formulated as follows:

 𝐾(𝑋, 𝑌) = (𝛾. 𝑋𝑇𝑌 + 𝑟)𝑑, 𝛾 > 0 ()

where r, d, and γ are kernel parameters. The RBF kernel is

represented by the following formula:

 𝐾(𝑋, 𝑌) = 𝑒𝑥𝑝(−𝛾. ‖𝑋 − 𝑌‖2), 𝛾 > 0 ()

While the sigmoid kernel is formulated as follows:

 𝐾(𝑋, 𝑌) = 𝑡𝑎𝑛ℎ(𝛾. 𝑋𝑇𝑌 + 𝑟) ()

Selection of the appropriate kernel function is very

important because it will determine the feature space where the

classifier function will be searched. As long as the kernel

TRANSFER
8%

PAYMENT
34%

DEBIT
1%

CASH-IN
22%

CASH-OUT
35%

https://www.kaggle.com/ntnu-testimon/paysim1
https://www.kaggle.com/ntnu-testimon/paysim1

4 Jurnal Teknik Elektro Vol. 14 No. 1 2022

functions match, SVM will operate correctly even if it doesn't

know which mapping function to use. Output classifier as a

balanced dataset is defined as follows:

 𝑠 = 𝑠𝑖𝑔𝑛(∑ 𝑓𝑘)
𝐾

𝑘=1
 ()

This formula is further explained in pseudocode for

handling imbalanced data and SVM parameters tuning as

shown in Figure 4.

1 Determine R as the original training set
2 for k = 1,2,..,K do
3 Form the Rk subset containing the same number of fraud and non-

fraud classes by randomly taking instances with or without
replacement at the Nd /Nm level. Nd is the sample size of fraud (the
desired size), while Nm is the non-fraud sample size (original class
size)

4 From subset Rk, train a classifier fk
5 Output classifier as a balanced dataset,

 𝑠 = 𝑠𝑖𝑔𝑛(∑ 𝑓𝑘)
𝐾

𝑘=1

6 end for

To train the model with dataset s:

7 Set grids of parameter: type of svm kernel, range of C & gamma

8 Set strategy by defining the number of k for k-fold cross-validation

9 Set scoring parameters: f1 as a harmonic average of precision &

recall

10 for (score in scoring parameter) do

11 for (k-fold cross-validation in the parameter grid) do

12 Find the best proportion of scoring parameter

13 Find the best combination from the parameter grid

(best_params)

14 end for

15 end for

16 Output the best solution found, best_params, as the final result

Figure 4. Pseudocode for RUS and SVM parameters tuning

D. MebPCA and Minimum Classification Error

Principal Component Analysis (PCA) is a dimension

reduction technique that is applied to data that has

multicollinearity, which is a condition that shows a perfect or

almost perfect linear relationship between some or all of the

variables. This multicollinearity is determined by the number

of conditions (k) as follows:

 𝑘 =
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛
 ()

λ is the eigenvalue of the covariance variable matrix, with the

limits of the condition number (k) as follows.

• k < 100; there is weak multicollinearity.

• 100 ≤ k ≤ 1000; moderate to strong multicollinearity

occurs.

• k > 1000; there is a very strong multicollinearity.

If the data has multicollinearity between variables, then PCA is

applied first to the dataset used. Thus, a number of principal

components (PC) which are orthogonal to each other will be

formed.

The principal component is a form of variable

transformation which is a linear combination of variables. The

process of forming the principal component in detecting

suspicious or fraudulent financial transactions is by

determining the X matrix which is the data of banking

customers' financial transactions. From this X matrix, then

calculate the covariance matrix to determine the eigenvalues (λ).

Based on the eigen matrix, the principal components (PC)

formed are as follows:

()

where z and v are data variables, PC1 is first principal

component, PC2 is second principal component and so on.

In conventional PCA, an eigenvector with a greater

eigenvalue is chosen as the main component, making minimum

data variance. From the classification view, this argument is

less meaningful because classification demands a series of

projection vectors that can provide the highest discrimination

among different classes. Therefore, choosing the main

component with the largest eigenvalue as the basis for

dimensional reduction results in different class recognition not

being optimal [20].

In addition, PCA is a type of statistical and unsupervised

algorithm for extracting features without using class

information from input data. In certain cases, the extracted

features may not be suitable for classification. Therefore,

principal components are not always useful for classification

because they are not the most discriminating features [21].

Some components with small eigenvalues may have better

classification performance than those with larger values.

Eigenvalues and eigenvectors are fundamental parameters,

hence, they are impossible to eliminate. Therefore, a PCA

modification applicable for classification purposes is a slightly

altered approach concerning minimizing errors rather than the

eigenvalue approach. It is why the approach is called the

Minimum error-based PCA (MebPCA). The modification of

the PCA concept is basically to choose the feature vector

projected along the k-minimum error instead of considering the

feature vector value based on the k-largest eigenvalue.

Pseudocode for MebPCA is shown in Figure 5.

1 Define pipeline for combining PCA and SVM

2 Define range of n_components to be calculated

3 for (N_components in range of N_components) do

4 Pipelining PCA and SVM with selected parameters.

5 Fit the classifier combination

6 Calculate the classification error using zero-one-loss for each

N_component and sort ascending

7 Select the n_component with the minimum classification error

value

8 end for

Figure 5. Pseudocode for MebPCA

In Figure 5, the pipeline is a method for carrying out several

tasks together but in different stages, which is flowed

continuously to the processing unit. In this way, the processing

unit always works, with MebPCA output from the selected

N_component range will be the input of the SVM classifier.

The error rate is then determined by the zero-one-loss function

from the Python Library. It was based on the argument that the

binary classification includes fraud detection. The minimum

value of classification error is chosen from these error rate

values. In other words, the classification error value for each

component was calculated, and then the smallest error value

was taken.

The Minimum Classification Error (MCE) [22] is a type of

discriminant analysis that reaches a minimum classification

error using the gradient descent method. This method applies

the loss function as a differentiated function of the

misclassification size, defined as a close estimate of the actual

misclassification. As such, the MCE algorithm is a more direct

way to achieve a minimum misclassification level than

conventional discriminatory training algorithms. This

algorithm can be summarized in the following procedure:

• Define a discriminant function with Simple Euclidean

Distance:

 𝐷𝑖
(𝑝)

= ‖𝑇𝑋(𝑝) − µ𝑖‖
2
 ()

𝑃𝐶1 = 𝑧𝑗𝑣𝑗1 = 𝑧1𝑣11 + 𝑧2𝑣21 + ⋯ + 𝑧𝑝𝑣𝑗1

𝑃𝐶2 = 𝑧𝑗𝑣𝑗2 = 𝑧1𝑣12 + 𝑧2𝑣22 + ⋯ + 𝑧𝑝𝑣𝑗2

𝑃𝐶𝑝 = 𝑧𝑗𝑣𝑗𝑝 = 𝑧1𝑣1𝑝 + 𝑧2𝑣2𝑝 + ⋯ + 𝑧𝑝𝑣𝑗𝑝

Jurnal Teknik Elektro Vol. 14 No. 1 2022 5

where T is the transformation matrix ranked d (d ≤ D),

D is the original data dimension, and µi is the mean vector

of class i.

• Determine the size of the classification error by

embedding the classification criteria in the overall

minimum classification error formulation.

()

where gi(x
(p), Ʌ), i = 1, 2, ..., N is a set of discriminant

functions; x(p) is the pth observation vector; N is the

number of classes; Ʌ is the parameter set for each class;

ζ represents a positive number for N-1.

• Determine the Loss function as a monotonic sigmoid

function suitable for the gradient algorithm to smooth the

size of misclassification. The sigmoid function is used

because it is a zero-one function suitable for the gradient

algorithm.

()

The total loss function is defined as:

 ()

E. Metrics for Evaluating Imbalanced Data

Classification performance in imbalanced data domain is

more effective if measured independently from positive and

negative classes [4]. This measurement is based on the

following confusion matrix in Table II.

TABLE II. CONFUSION MATRIX MODEL

True

Class

Predicted Class

Positive Negative

Positive
True Positive

(TP)

False Negative

(FN)

Negative
False Positive

(FP)

True Negative

(TN)

From this confusion matrix model, appropriate metrics for

imbalanced data can be formed, including precision, recall, and

f1-score, expressed in the following formulas:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 ()

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑁𝑜𝑛𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ()

 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ()

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑁𝑜𝑛𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ()

TP reflects correctly classified positive instances, whereas

FP means negative instances misclassified as TP. TN shows

correctly classified negative instances, while FN reflects

positive instances misclassified as TN.

Precision and recall state how precise and robust a model is.

These two metrics are linearly unrelated. If a model has good

precision, it does not necessarily work well at recall, and vice

versa. Another way to evaluate the model’s performance on

imbalanced data is to take the harmonic average between

precision and recall. This metric is called f1-score, which is

expressed as follows:

 F1 𝑠𝑐𝑜𝑟𝑒 = 2 .
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 ()

In contrast, AUPRC is a trade-off between precision and

recall using different probability thresholds. A perfect AUPRC

means that the model can find all positive instances (perfect

recall) without incorrectly classifying negative instances as

positive (perfect precision). All of these metrics are more

accurate when working with imbalanced data [23].

III. RESULTS AND DISCUSSION

This section discusses the tuning results obtained from the

selection of kernels and hyperparameters in SVM and the

number of components for MebPCA based on classification

errors. The model’s performance is evaluated using metrics

such as precision, recall, f-measure (f1-score), and Area Under

Precision-Recall Curve (AUPRC). In addition, the duration of

training time is also a concern to assess the model’s

performance.

A. Parameters Selection for Training

The best values of each parameter resulted from 5-fold

Cross-Validation (CV) in the tuning process of the kernel and

hyperparameter are shown in Figure 6. The use of 5-fold CV

aims to reduce computation time while maintaining estimation

accuracy. This is because the use of the default 10-fold cross

validation on large data demands large computing resources

and will require much longer computational time for 10 times

subset splitting, training & testing. In addition, the opportunity

for 1 subset for testing containing fraud data will be smaller

because the fraud class is much smaller than non-fraud, so the

testing subset will be biased.

Figure 6. 5-Fold CV mean test score for each kernel

Figure 6 shows that the best mean test score for each kernel

is achieved in a combination of C and gamma parameter values.

The best score of the linear kernel is achieved at a score of

0.988084 when gamma (ɤ) = 0.1 and C = 100, while the RBF

score 0.988294 is achieved when gamma (ɤ) = 1 and C = 93.

The results of CV scores on poly kernels reach 0.997424,

obtained when gamma (ɤ) = 10 and C = 55, and the sigmoid

kernel reaches a score of 0.891262 when gamma (ɤ) = 0.001

and C = 5. It can be seen that poly kernel is the best kernel,

followed by RBF, linear, and sigmoid in sequence.

Gamma (γ) is a parameter for a non-linear hyperplane

kernel, it is used to control the speed of the learning process.

While C is the penalty parameter associated with the error, it is

is used to control the trade-off between hyperplane margins and

classification errors.

Furthermore, the number of principal components (N) for

MebPCA was determined based on the MCE by utilizing the

zero-one-loss library contained in the Python loss function

library. The results of the Classification Error (CE)

measurement for the application of MebPCA are shown in

Table III.

𝑑𝑘(𝑥(𝑝)) = −𝑔𝑘(𝑥(𝑝), Ʌ) + ∑
1

𝑁 − 1
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖≠𝑘

𝑔𝑖(𝑥(𝑝), Ʌ)

𝐿(𝑥(𝑝)) =
1

1 + 𝑒−𝛼𝑑(𝑥(𝑝),Ʌ)

𝐿 = ∑ 𝐿(𝑝)

𝑃

𝑝=1

6 Jurnal Teknik Elektro Vol. 14 No. 1 2022

TABLE III. CE-BASED N FOR MEBPCA DEPLOYMENT

MebPCA Combined With

SVM (linear)
RUS + SVM

(linear)
RUS + Tuned_SVM

N CE N CE N CE

1

2

3
4

5

6

7
8

9

0.016365

0.015752

0.014539
0.014513

0.004971

0.004531

0.004531
0.004531

0.004531

1

2

3
4

5

6

7
8

9

0.092593

0.086370

0.081532
0.067619

0.067539

0.056984

0.056984
0.056984

0.056984

1

2

3
4

5

6

7
8

9

0.129494

0.108079

0.105706
0.012967

0.009582

0.005357

0.005357
0.005357

0.005357

The number of CE-based PCA components for MebPCA

deployment forms a certain pattern trend. Trend in the results

of classification error measurements for each number of

MebPCA components are shown in Figure 7.

Figure 7. Classification error for each number of MebPCA components

Figure 7 shows that the number of components with the

smallest classification error value is obtained at value n starting

at 6 and converging to the next value of n. Therefore, the value

of n=6 is used in the MebPCA implementation. A small error

value does not significantly affect the classifier's performance.

Thus, MebPCA speeds up computation time by reducing data

dimensions and maintaining SVM performance. Then, the

combination of parameters from the tuning is applied to the

fraud prediction in the test set.

B. Model Performance Evaluation

The results of our re-measurement on various SVM

combination models of previous studies and their comparison

with our model results are shown in Table IV. Our model

(RUS+Tuned_SVM+MebPCA) and previous model with a

slight modification (RUS+Tuned_SVM [11]), being compared

with the previous research model (RBF SVM [5]), are able to

improve precisions from 0.58 to 0.75 and 0.76 or improvement

of 29.31% and 31.03%. Improvement of f1-scores reached

17.8% and 19.18% from 0.73 to 0.86 and 0.87, while the recall

result increased by 2%. A slight change in previous study [11]

was the application of stratified sampling to the dataset

separation, which caused slightly different results to our current

results. Whereas if it is compared with linear SVM model [12]

or combined with RUS [24], are able to improve f1-score and

recall perfectly. This has the effect of significantly improving

the misclassified fraud.

The RUS+SVM (Kernel:linear) model [24] did not use

PaySim as the main dataset. Therefore, adjustment and re-

measurement of the model with PaySim was carried out.

Likewise, the SVM (Kernel:linear) [12] model, even though it

already used PaySim, but due to the number of samples was

different, then re-measurements were also carried out.

F1-score is the harmonic average of precision and recall.

This measure shows how precise and robust a model is. In this

case, it is important to have a trade-off between precision and

robustness. When precision and recall are proportional to each

other, the F1-score will be maximized. The F1-score will be

degraded when only one of the metrics is optimized. Because

F1-scores are available per class, for example fraud and non-

fraud classes, the F1-score for fraud classes will be more

important than non-fraud classes. This is because it is more

important to classify fraud cases correctly than non-fraud ones.

TABLE IV. COMPARISON OF MEASUREMENT RESULTS

No Methods

P
re

ci
si

o
n

R
ec

a
ll

F
1

-S
co

re

A
U

P
R

C

T
ra

in
in

g

T
im

e

(h
h
:m

m
:s

s)

M
is

cl
a

ss
if

ie
d

N
o

n
-F

ra
u

d

M
is

cl
a

ss
if

ie
d

F
ra

u
d

1. SVM (kernel=linear) [12] 0.96 0.75 0.84 0.96 00:08:36

(516.02s)

36 304

2. SVM (linear) + MebPCA (n=6) 0.96 0.75 0.84 0.96 00:01:44

(104.13s)

36 304

3. RUS + SVM (kernel=linear) [24] 0.22 1.00 0.36 0.85 00:00:01

(1.24s)

4,275 1

4. RUS + SVM (linear) + MebPCA (n=6) 0.22 1.00 0.36 0.85 0.963s 4,275 1

5. RUS+Tuned_SVM [11]

(poly,γ=10,C=55)

0.76 1.00 0.87 0.91 00:04:52

(292.25s)

377 2

6. RUS+Tuned_SVM + MebPCA (n=6) 0.75 1.00 0.86 0.85 00:03:05

(185.9s)

399 3

7. (SVM kernel RBF, class weight:16) [5] 0.58 0.98 0.73 0.98 - 436 7

Jurnal Teknik Elektro Vol. 14 No. 1 2022 7

It can be seen in Table IV that the implementation of

MebPCA did not significantly degrade the classifier's

performance. It only affected the duration of the model training.

All methods in which MebPCA was applied had improved

training time (training time was getting shorter). In contrast, the

implementation of RUS caused performance degradation due

to the reduction of majority (non-fraud) classes. It could be seen

in the results of SVM (kernel: linear) [12] that the performance

dropped after RUS was applied (RUS+SVM_Linear) [24], then

the performance was improved again by tuning the kernel and

hyperparameter (RUS+Tuned_SVM) [11].

Table IV also shows how the effect of applying RUS,

MebPCA, and tuning to the kernel and hyperparameter in

changing the classifier’s performance. This trend is shown in

Figure 8 where RUS+Tuned_SVM+MebPCA significantly

improve precision and the f1-score when compared to methods

without any tuning or by default hyperparameters [RUS+SVM

(linear)].

In Figure 8, the RBF kernel SVM model [5] and RUS+SVM

(kernel=linear) [24] shows that the recall result is very high,

while the precision is very low. In contrast, SVM (kernel: linear)

[12] yields high precision with relatively low recall. These two

situations cause the f1-score to be low because recall and

precision are not balanced, so the AUPRC is biased. A high

recall causes the model to be able to predict fraud class well,

while poor precision means that non-fraud class cannot be well

predicted by the model in these studies [5], [24]. This model

only tuned the class-weight parameter with preprocessing,

which might differ from our study. On the other hand, a low

recall causes the model [12] predict fraud incorrectly much

larger than the error in predicting non-fraud. In addition, the

handling of an imbalanced dataset was also not implemented,

so the model was underfit because it did not get perfect training.

Furthermore, AUPRC results in model RUS+Tuned_SVM

& RUS+Tuned_SVM+MebPCA are shown in Figure 9 and

Figure 10. The AUPRCs of both models were lower than the

models [5], [12] because our AUPRCs reflected a broader and

evener area under the curve due to more balanced precision and

recall. As a result, our models could suppress misclassification

in the fraud and non-fraud classes equally well.

Figure 8. Effects of RUS, MebPCA and tuning parameters on SVM

performance

The measurement results on the confusion matrix for both

models are shown in Table V. This table shows that both

models can predict fraud and non-fraud classes well. In

[RUS+Tuned_SVM], 377 (0.51%) non-fraud transactions were

misclassified as fraud transactions, and 2 fraud transactions

(0.16%) were misclassified as non-fraud. Whereas in

[RUS+Tuned_SVM+MebPCA], 399 (0.54%) non-fraud

transactions were misclassified as fraud, and 3 fraud

transactions (0.24%) were mistakenly predicted as non-fraud

transactions. A comparison of model training time to evaluate

the effect of applying RUS and MebPCA is shown in Figure 11.

Figure 9. AUPRC of RUS+Tuned_SVM

Figure 10. AUPRC of RUS+Tuned_SVM+MebPCA

TABLE V. CONFUSION MATRIX RESULTS

True Class

Predicted Class

RUS+Tuned_SVM
RUS+Tuned_SVM+

MebPCA
Non-

Fraud
Fraud

Non-

Fraud
Fraud

Non-Fraud 73,433 377 73,411 399

Fraud 2 1,226 3 1,225

In Figure 11, the combination of RUS and MebPCA

together cuts the model training time significantly. This is

because RUS handles imbalanced datasets and reduces model

training time. Meanwhile, mPCA modifies the data dimension

reduction technique based on classification error, which will

not only speed up computation time, but also maintain SVM

performance. If our two approaches are compared, it can be

seen that there is a significant reduction in training time of

36.39% in the [RUS+Tuned_SVM+MebPCA] method,

although there is a slight decrease in the precision and f1-score

results.

8 Jurnal Teknik Elektro Vol. 14 No. 1 2022

Figure 11. Comparison of model training time

When dealing with a dataset with large dimensions but

limited computing resources, the combination of

[RUS+Tuned_SVM+MebPCA] was more suitable because it

accommodated the speed of model training with good

prediction results. Overall, it can be concluded that the

MebPCA method maintains classifier performance or has no

major impact on classification results, but it is significant for

the computational time.

From the results above, it can be seen that the under-

sampling method specifically handles class imbalances in the

PaySim Dataset and shortens the model training time. SVM

tuning was performed to improve the classifier’s performance,

which had been declining due to the application of RUS. The

best tuning results for Transfer transaction types are poly

kernels with gamma=10 and C=55. The use of PCA helps

reduce computing time significantly, but it risks degrading

SVM performance due to reduced dataset dimensions. The

application of MebPCA based on the Minimum Classification

Error (MCE) cuts training time and maintains SVM

performance so that MebPCA is better than PCA for

classification purposes. The assessment to determine the

number of components in traditional PCA is subjective,

depending on the desired accuracy value. At the same time,

MebPCA explicitly selects the number of components based on

the lowest classification error value that does not interfere with

the classifier performance. The number of components selected

based on the lowest classification error value is 6. This number

of PCA components is determined based on the Minimum

Classification Error (MCE) which is calculated by utilizing the

zero-one-loss library contained in the Python loss function

library. This is based on the argument that fraud detection

belongs to the category of binary classification.

IV. CONCLUSION

The research intends to combine the tuned SVM, RUS, and

MebPCA methods in improving the performance of SVM in

classifying fraud and non-fraud cases. The proposed model can

reduce the number of misclassifications, predict fraud and non-

fraud classes well, and effectively provide better classification

results when compared to the methods in previous studies or if

it is run without parameters tuning, with a precision

improvement of 29.31%, recall 2% and f1-score of 19.8%

compared to the previous study. In addition, the proposed

model also becomes efficient, which can significantly reduce

training time without reducing classifier performance, with an

improvement in training time efficiency of 36.39%. For further

work, PaySim Dataset can be developed by modifying this

dataset to accommodate digital currency transactions such as

bitcoins that are not included in custodian bank services and

electronic money. Then deep learning can be applied to predict

the possibility of the emergence of new suspicious transaction

patterns. Furthermore, transaction data analysis and processing

can be performed with a graph database to provide a visual

representation of transaction patterns as a recommendation for

decision-makers.

ACKNOWLEDGMENT

The authors are grateful for the support from Universitas

Gadjah Mada, especially the Department of Electrical and

Information Engineering for this publication, and appreciate the

Indonesian Ministry of Communications and Information

Technology's program in advancing education in Indonesia

through e-Government scholarships.

REFERENCES

[1] N. S. Alfaiz and S. M. Fati, “Enhanced Credit Card Fraud Detection

Model Using Machine Learning,” Electronics, vol. 11, no. 662, pp. 1–

16, 2022, doi: https://doi.org/10.3390/electronics11040662.

[2] W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of

Anomaly Detection Techniques and Recent Advances,” Expert Syst.

Appl., vol. 193, p. 116429, 2022, doi: 10.1016/j.eswa.2021.116429.

[3] S. Stefanov, D. Georgieva, and J. Vasilev, “Issues in the Disclosure of

Financial Information by Multinational Enterprises,” TEM J., vol. 11, no.

1, pp. 5–12, 2022, doi: 10.18421/TEM111-01.

[4] T. Le, “A comprehensive survey of imbalanced learning methods for

bankruptcy prediction,” IET Commun., vol. 16, no. 5, pp. 433–441, 2022,

doi: 10.1049/cmu2.12268.

[5] A. Oza, “Fraud Detection using Machine Learning,” Stanford Univ.

CS229 Proj. Publ., vol. 261, pp. 1–6, 2018.

[6] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A

Comparative Evaluation of Outlier Detection Algorithms: Experiments

and Analyses,” Pattern Recognit. J., vol. 74, pp. 406–421, 2018, doi:

https://doi.org/10.1016/j.patcog.2017.09.037.

[7] A. O. Adewumi and A. A. Akinyelu, “A Survey of Machine Learning

and Nature-Inspired Based Credit Card Fraud Detection Techniques,”

Int J Syst Assur Eng Manag 8, vol. 8, pp. 937–953, 2017, doi:

https://doi.org/10.1007/s13198-016-0551-y.

[8] E. A. Lopez Rojas, S. Axelsson, and D. Baca, “Analysis of Fraud

Controls using the PaySim Financial Simulator,” Int. J. Simul. Process

Model., vol. 13, no. 4, pp. 377–386, 2018, doi:

10.1504/ijspm.2018.10014984.

[9] E. A. Lopez-Rojas and C. Barneaud, “Advantages of the PaySim

Simulator for Improving Financial Fraud Controls,” Springer Nat. Switz.

AG 2019, vol. 998, pp. 727–736, 2019, doi: 10.1007/978-3-030-22868-

2_51.

[10] E. A. Lopez-Rojas, A. Elmir, and S. Axelsson, “PaySim: A Financial

Mobile Money Simulator for Fraud Detection,” Eur. Model. Simul.

Symp., no. c, pp. 249–255, 2016.

[11] B. N. Pambudi, I. Hidayah, and S. Fauziati, “Improving Money

Laundering Detection Using Optimized Support Vector Machine,” 2019

Int. Semin. Res. Inf. Technol. Intell. Syst., pp. 273–278, 2019, doi:

10.1109/ISRITI48646.2019.9034655.

[12] R. Pech, “Fraud Detection in Mobile Money Transfer as Binary

Classification Problem,” Eagle Tech. Inc Publ., pp. 1–15, 2019.

[13] H. Ubaya and R. S. Juairiah, “Performance of RUS and SMOTE Method

on Twitter Spam Data Using Random Forest,” J. Phys. Conf. Ser., vol.

1500, no. 1, pp. 1–8, 2020, doi: 10.1088/1742-6596/1500/1/012130.

[14] G. Pang, C. Shen, L. Cao, and A. Van Den Hengel, “Deep Learning for

Anomaly Detection: A Review,” ACM Comput. Surv., vol. 54, no. 2, pp.

1–38, 2022, doi: https://doi.org/10.1145/3439950.

[15] Z. Fan et al., “Modified Principal Component Analysis: An Integration

of Multiple Similarity Subspace Models,” IEEE Trans. Neural Networks

Learn. Syst., vol. 25, no. 8, pp. 1538–1552, 2014.

[16] D. J. J. Farnell, H. Popat, and S. Richmond, “Multilevel Principal

Component Analysis (mPCA) in Shape Analysis: A Feasibility Study in

Medical and Dental Imaging,” Comput. Methods Programs Biomed.,

2016, doi: 10.1016/j.cmpb.2016.01.005.

[17] S. Guo, P. Rösch, J. Popp, and T. Bocklitz, “Modified PCA and PLS:

Towards a Better Classification in Raman Spectroscopy – based

Biological Applications,” J. Wiley Chemom., no. October 2019, pp. 1–

10, 2020, doi: 10.1002/cem.3202.

[18] A. Salehi, M. Ghazanfari, and M. Fathian, “Data Mining Techniques for

Anti Money Laundering,” Int. J. Appl. Eng. Res., vol. 12, no. 20, pp.

10084–10094, 2017.

Jurnal Teknik Elektro Vol. 14 No. 1 2022 9

[19] A. Rojas-Domínguez, L. C. Padierna, M. J. Carpio Valadez, H. J. Puga-

soberanes, and H. J. Fraire, “Optimal Hyper-Parameter Tuning of SVM

Classifiers With Application to Medical Diagnosis,” IEEE Open Access

J., vol. 6, no. March 9, 2018, pp. 7164–7176, 2018, doi:

10.1109/ACCESS.2017.2779794.

[20] M. Riera, J. M. Arnau, and A. González, “DNN Pruning with Principal

Component Analysis and Connection Importance Estimation,” J. Syst.

Archit., vol. 122, p. 102336, 2022, doi: 10.1016/j.sysarc.2021.102336.

[21] C. He, J. Li, W. Liu, and J. Peng, “A Low-Complexity Quantum

Principal Component Analysis Algorithm,” Quantum Comput., vol. 3,

pp. 1–13, 2022, doi: 10.1109/TQE.2021.3140152.

[22] N. Bhargava, A. Kumar, D. Kumar, and Meenakshi, “A Modified

Concept of PCA to Reduce the Classification Error using Kernel SVM

Classifier,” Int. J. Sci. Eng. Res., vol. 6, no. 6, pp. 1509–1513, 2015.

[23] T. Saito and M. Rehmsmeier, “The Precision-Recall Plot is More

Informative than the ROC Plot When Evaluating Binary Classifiers on

Imbalanced Datasets,” PloS one. 10. e0118432, pp. 1–21, 2015, doi:

10.1371/journal.pone.0118432.

[24] M. B. Abidine, B. Fergani, and F. J. Ordóñez, “Effect of Over-sampling

Versus Under-sampling for SVM and LDA Classifiers for Activity

Recognition,” Int. J. Des. Nat. Ecodynamics, vol. 11, no. 3, pp. 306–316,

2016, doi: 10.2495/DNE-V11-N3-306-316.

