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Abstract— The main challenge of data mining approaches to detect fraud in financial transaction data is the 

imbalance of data classes in available datasets, with a much smaller fraud class proportion than the non-fraud. 

This imbalance affects the f1-score to be low due to imbalanced precision and recall. Therefore, the model can 
predict one class well, but it does not apply to another class. In addition, the lengthy training time duration 

and high computational resource requirements in implementing data mining also make them a particular 

concern. Therefore, solely handling imbalanced data is still insufficient to produce the expected performance. 

Reduction of data dimensions can be a solution to increase the speed of the process. However, this method 

actually reduces the classifier’s performance when it comes to classification. Furthermore, this study intends 

to improve the performance of the data mining approach based on the Support Vector Machine (SVM) classifier 
aiming at detecting financial fraud transactions. The SVM performance was refined by tuning the kernel and 

hyperparameter integrated with the Random Under Sampling (RUS) and our Minimum error-based Principal 

Component Analysis (MebPCA). The RUS was used to handle imbalanced data, while MebPCA modified data 

dimension reduction techniques based on classification errors to speed up computational time without 

disturbing the performance of SVM. This combination improves the classifier's performance in detecting fraud 

effectively with a precision improvement of 29.31% and f1-score of 19.8%, and efficiently reduces the duration 
of training time significantly by 36.39% compared to previous research regarding the SVM method for fraud 

detection.  
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I. INTRODUCTION 

This research is motivated by the fact that money laundering 

is classified as a transnational and extraordinary crime. Thereby, 

it becomes a serious threat to financial institutions as well as 

the political and economic stability of a country [1]. Fraudsters 

are constantly working on developing their approaches to 

exploit the vulnerabilities of current money laundering 

countermeasures, many of which target the financial sector [2]. 

In this case, Anti Money Laundering is an important 

significance for world monetary stability. 

The main indication of money laundering is a fraudulent or 

suspicious transaction in which the transaction does not have a 

clear business purpose and is carried out outside the usual 

transaction pattern. Traditional or manual approaches to Anti 

Money Laundering include identification through Customer 

Due Diligence, detection by Transaction Analysts, prevention 

by anti-money laundering socialization, and monitoring by the 

Supervisory and Regulatory Institution. The transactional 

banking data volume that continues to increase has caused these 

approaches to be no longer optimal because the opportunity for 

manual fraud detection has become increasingly inaccurate due 

to fatigue and hassles of transaction analysts as humans [3]. 

Data mining techniques are needed to help the transaction 

analysts work faster, more effectively, and efficiently. However, 

there are problems in implementing data mining for fraud 

detection, including imbalanced datasets [4], data mining 

methods and metrics that are very sensitive to imbalanced data 

[5], long training time duration, and high computational 

resource requirements in applying data mining. The handling 

of imbalanced data, selecting appropriate metrics [6], and 

choosing the data dimension reduction method with 

adjustments for classification can help improve classifier 

performance [7]. 

Our study utilized the PaySim Dataset, a dataset of non-real 

financial transactions that has been generated from simulations 

in the study [8]–[10]. The PaySim dataset produced by these 

studies was imbalanced, with the proportion of fraud and non-

fraud classes being far from equal. Hence, it could not be 

directly implemented in the data mining process and this 

imbalance needs to be handled to produce the expected 

performance. Several previous studies have used Paysim 

Dataset for fraud detection, including [5], [8]–[12]. 

Various resampling techniques such as Random Over 

Sampling (ROS), Synthetic Minority Over-sampling 

Technique (SMOTE), and Random Under Sampling (RUS) 

have been compared to handle imbalanced datasets [13], but 

neither method was significantly better because it would 

depend on the degree of the dataset imbalance.  

Handling imbalanced datasets alone is not sufficient to 

produce the expected performance [14]. The SVM classifier 

has been chosen in our study because fraud detection is a binary 

classification problem so the SVM concept fits well. It is also 

supported by the results of the SVM classification in previous 

studies [5] and [12], which, despite its insignificancy, are better 

than other methods. However, some parts were still 



2 Jurnal Teknik Elektro Vol. 14 No. 1 2022 

unperformed in studies [5] and [12]. Several issues have not 

been handled in the previously proposed classification method, 

i.e., imbalanced data as well as Kernel and SVM 

hyperparameter tunings. Both of these are part of the main 

concern of our research so that this research is important in 

improving the performance of SVM. 

Improving SVM performance can also be done by 

evaluating the dimensions of the datasets through the Principal 

Component Analysis (PCA) approach. Studies [15]–[17] show 

how dimension reduction approaches in improving engine 

performance. Nevertheless, when it comes to pattern 

recognition, such as face recognition or even fraud detection, 

modification techniques based on subspace similarity in [15], 

multilevel approach in [16], and feature extraction in [17] may 

still mix elements of data. For example, when recognizing a 

human face with and without a mustache, there can be 

confusion in getting the right density of a certain face area, as 

the false positive that occurred in the case of fraud detection. 

Reducing data dimensions using PCA can be a solution to 

increase process speed. However, this method actually reduces 

the performance of the classifier in terms of classification. 

Therefore, PCA implementation must go through a scalable 

approach. 

This research continues previous study [11] in which tuned 

Support Vector Machine (SVM) was combined with Random 

Under Sampling (RUS) to increase the classifier’s performance 

for fraud detection purposes. The study [11] results have shown 

a significantly improved performance in precision of 40.82% 

and f1-score of 22.79% compared to previous work in research 

[5]. However, this previous research [11] still left a problem 

with the lengthy duration of model training. Our research 

intends to improve previous models’ performance by 

combining the previous method [11] with Minimum error-

based Principal Component Analysis (MebPCA) to reduce 

training time without reducing model performance. This is very 

important regarding the effectiveness of classifiers and 

resource efficiency. 

Improving the performance of SVM in classifying fraud and 

non-fraud instances is the main objective of this research. This 

SVM performance improvement is achieved by tuning the 

kernel and hyperparameters integrated with RUS and our 

MebPCA. This combination has implications for the classifier's 

ability to detect fraudulent transactions on imbalanced financial 

transaction datasets effectively with increased precision and f1-

scores, as well as efficiently reducing training time duration 

significantly. This article will further elaborate on the model for 

financial fraud detection, Paysim Dataset, how SVM tuning is 

done and how to balance imbalanced data, MebPCA, and what 

metrics are suitable for evaluating imbalanced data. 

II. METHOD 

This section describes the optimization of the model, 

starting with the proposed model for financial fraud detection, 

then the dataset used is explained in the "PaySim Dataset" 

subsection. How to handle imbalanced data in PaySim Dataset 

and tune the classifier will be discussed in the “Imbalanced 

Data Handling and SVM Parameters Tuning” subsection. Next, 

Minimum error-based PCA and Minimum Classification Error 

are proposed as approaches to improve classifier efficiency and 

performance. Classifier performance is then measured in terms 

of metrics discussed in the "Metrics for Evaluating Imbalanced 

Data" subsection. 

A. Financial Fraud Detection Model 

The proposed system model for detecting financial fraud is 

shown in Figure 1. In Figure 1, stratified sampling is applied to 

split the dataset into 70% train set and 30% test set.   

Stratified sampling aims to maintain the data generated 

from the dataset separation represents the same proportion of 

each class as in the initial dataset. Figure 1 shows that 

preprocessing is applied to the train data first, then RUS is used 

to balance the class between fraudulent and non-fraudulent 

transactions. This process shortens model training time and 

degrades model performance. Performance degradation is then 

 

Figure 1. Proposed model for financial fraud detection 
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overcome by tuning in SVM parameters using 5-fold cross-

validation. In this 5-fold cross-validation, the dataset is divided 

into 4 subsets of train data and 1 subset of test data, which is 

done 5 times, with each piece of data having the opportunity to 

become a test set. 

The tuning results were then combined with MebPCA. 

Specifically, MebPCA modified the technique of reducing data 

dimensions based on the minimum classification error. This 

approach cuts the duration of model training time and maintains 

SVM performance. Furthermore, the results of the training 

were stored as a classifier model in the knowledge base for the 

prediction of test sets, whether as normal transactions or 

suspicious transactions. 

The combination scheme of RUS+Tuned_SVM+MebPCA 

in extracting features can be seen in Figure 2. RUS forms a 

balanced data class (instance) by freezing minority class (fraud) 

and randomly taking majority class (non-fraud) as much as 

fraud class data. Balanced instances optimized training and 

reduced model training time due to a reduction of majority 

instances. Classifiers worked best when the majority and 

minority classes were rebalanced [4]. While MebPCA reduced 

the data dimensions data by considering the value of 

classification errors using the Tuned SVM Classifier. 

The classification error value for each N component was 

calculated, and then the smallest classification error value was 

taken. N components with the smallest classification error were 

used for classification because a small classification error value 

did not interfere with the classifier's performance. Thus, this 

MebPCA sped up computing time and maintained SVM 

performance. 

 

Figure 2. RUS+Tuned_SVM+MebPCA in extracting features 

B. PaySim Dataset 

The research material used in this study is PaySim Dataset,  

which has been obtained from https://www.kaggle.com/ntnu-

testimon/paysim1. The PaySim is imbalanced data, with the 

proportion of fraud and non-fraud classes being far from equal. 

Hence, it could not be directly implemented in the data mining 

process to produce the expected performance, so this imbalance 

needs to be handled first. This dataset has 6.3 million 

transactions distributed in various transaction types, as shown 

in Figure 3. 

Fraudulent transactions are only found in Transfer and 

Cash-out transactions with a less than 1% fraud distribution, so 

the proportion of fraud is much smaller than non-fraud. Table I 

shows the detail about this distribution. The use of a public 

dataset in this study due to the difficulty in obtaining real 

banking transaction data because of bank secrecy law 

provisions. In this study, only the Transfer transaction type was 

used to test the proposed model. 

 

Figure 3. Transaction distribution in PaySim Dataset 

TABLE I.   FRAUD DISTRIBUTION IN PAYSIM DATASET 

No 
Type of 

Transactions 
Non-Fraud Fraud Total Records 

1. TRANSFER 528,812 4,097 532,909 

2. PAYMENT 2,151,494 0 2,151,494 

3. DEBIT 41,432 0 41,432 

4. CASH-IN 1,399,284 0 1,399,284 

5. CASH-OUT 2,233,384 4,116 2,237,500 

C. Imbalanced Data Handling and SVM Parameters Tuning 

This study controls class imbalance on the PaySim Dataset 

with RUS by freezing minority instances (fraud) and randomly 

taking majority instances (non-fraud) as much as minority 

instances to establish balanced instances between fraud and 

non-fraud classes. Balanced classes avoid underfit or overfit to 

get an optimal training model [18]. Reducing most instances in 

RUS speeds up model training time and risks eliminating useful 

information that can degrade model performance. 

SVM was used to find the best hyperplane as a function 

separating fraud and non-fraud instances in the input space. 

This hyperplane was represented as the kernel, determined by 

measuring the hyperplane’s margin and finding its maximum 

point [19]. SVM parameters tuning aimed to select the kernel 

and hyperparameter to obtain the value combination producing 

the best precision and recall based on the cross-validation 

results on the train set. Kernel selection was applied to the 

linear, polynomial, radial basis function (RBF), and sigmoid 

kernel. Meanwhile, hyperparameter selection in this study was 

performed only on gamma (ɤ) and C parameters. These 

parameters tuning would improve the classifier’s performance 

which was down due to the implementation of RUS.  

The kernel functions commonly used in the SVM method 

are linear, RBF, polynomial, and sigmoid. Mathematically, the 

linear kernel can be represented as follows: 

 𝐾(𝑋, 𝑌) = 𝑋𝑇𝑌 () 

where X is input instance, XT is transpose X, and Y is output 

instance. While the polynomial kernel is formulated as follows: 

 𝐾(𝑋, 𝑌) = (𝛾. 𝑋𝑇𝑌 + 𝑟)𝑑, 𝛾 > 0 () 

where r, d, and γ are kernel parameters. The RBF kernel is 

represented by the following formula: 

 𝐾(𝑋, 𝑌) = 𝑒𝑥𝑝(−𝛾. ‖𝑋 − 𝑌‖2), 𝛾 > 0 () 

While the sigmoid kernel is formulated as follows: 

 𝐾(𝑋, 𝑌) = 𝑡𝑎𝑛ℎ(𝛾. 𝑋𝑇𝑌 + 𝑟) () 

Selection of the appropriate kernel function is very 

important because it will determine the feature space where the 

classifier function will be searched. As long as the kernel 

TRANSFER
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functions match, SVM will operate correctly even if it doesn't 

know which mapping function to use. Output classifier as a 

balanced dataset is defined as follows: 

 𝑠 = 𝑠𝑖𝑔𝑛(∑ 𝑓𝑘)
𝐾

𝑘=1
 () 

This formula is further explained in pseudocode for 

handling imbalanced data and SVM parameters tuning as 

shown in Figure 4. 

1 Determine R as the original training set 
2 for k = 1,2,..,K do 
3 Form the Rk subset containing the same number of fraud and non-

fraud classes by randomly taking instances with or without 
replacement at the Nd /Nm level. Nd is the sample size of fraud (the 
desired size), while Nm is the non-fraud sample size (original class 
size) 

4 From subset Rk, train a classifier fk 
5 Output classifier as a balanced dataset,  

  𝑠 = 𝑠𝑖𝑔𝑛(∑ 𝑓𝑘)
𝐾

𝑘=1
        

6 end for  

To train the model with dataset s: 

7 Set grids of parameter: type of svm kernel, range of C & gamma 

8 Set strategy by defining the number of k for k-fold cross-validation  

9 Set scoring parameters: f1 as a harmonic average of precision & 

recall 

10 for (score in scoring parameter) do 

11 for (k-fold cross-validation in the parameter grid) do 

12   Find the best proportion of scoring parameter 

13   Find the best combination from the parameter grid 

(best_params) 

14  end for 

15 end for 

16 Output the best solution found, best_params, as the final result 

Figure 4. Pseudocode for RUS and SVM parameters tuning 

D. MebPCA and Minimum Classification Error 

Principal Component Analysis (PCA) is a dimension 

reduction technique that is applied to data that has 

multicollinearity, which is a condition that shows a perfect or 

almost perfect linear relationship between some or all of the 

variables. This multicollinearity is determined by the number 

of conditions (k) as follows: 

 𝑘 =
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛
 () 

λ is the eigenvalue of the covariance variable matrix, with the 

limits of the condition number (k) as follows. 

• k < 100; there is weak multicollinearity. 

• 100 ≤ k ≤ 1000; moderate to strong multicollinearity 

occurs. 

• k > 1000; there is a very strong multicollinearity. 

If the data has multicollinearity between variables, then PCA is 

applied first to the dataset used. Thus, a number of principal 

components (PC) which are orthogonal to each other will be 

formed.  

The principal component is a form of variable 

transformation which is a linear combination of variables. The 

process of forming the principal component in detecting 

suspicious or fraudulent financial transactions is by 

determining the X matrix which is the data of banking 

customers' financial transactions. From this X matrix, then 

calculate the covariance matrix to determine the eigenvalues (λ). 

Based on the eigen matrix, the principal components (PC) 

formed are as follows: 

 

() 

 

where z and v are data variables, PC1 is first principal 

component, PC2 is second principal component and so on. 

In conventional PCA, an eigenvector with a greater 

eigenvalue is chosen as the main component, making minimum 

data variance. From the classification view, this argument is 

less meaningful because classification demands a series of 

projection vectors that can provide the highest discrimination 

among different classes. Therefore, choosing the main 

component with the largest eigenvalue as the basis for 

dimensional reduction results in different class recognition not 

being optimal [20]. 

In addition, PCA is a type of statistical and unsupervised 

algorithm for extracting features without using class 

information from input data. In certain cases, the extracted 

features may not be suitable for classification. Therefore, 

principal components are not always useful for classification 

because they are not the most discriminating features [21]. 

Some components with small eigenvalues may have better 

classification performance than those with larger values. 

Eigenvalues and eigenvectors are fundamental parameters, 

hence, they are impossible to eliminate. Therefore, a PCA 

modification applicable for classification purposes is a slightly 

altered approach concerning minimizing errors rather than the 

eigenvalue approach. It is why the approach is called the 

Minimum error-based PCA (MebPCA). The modification of 

the PCA concept is basically to choose the feature vector 

projected along the k-minimum error instead of considering the 

feature vector value based on the k-largest eigenvalue. 

Pseudocode for MebPCA is shown in Figure 5. 

1  Define pipeline for combining PCA and SVM  

2  Define range of n_components to be calculated  

3  for (N_components in range of N_components) do  

4   Pipelining PCA and SVM with selected parameters. 

5  Fit the classifier combination 

6   Calculate the classification error using zero-one-loss for each 

N_component and sort ascending 

7   Select the n_component with the minimum classification error 

value  

8  end for  

Figure 5. Pseudocode for MebPCA 

In Figure 5, the pipeline is a method for carrying out several 

tasks together but in different stages, which is flowed 

continuously to the processing unit. In this way, the processing 

unit always works, with MebPCA output from the selected 

N_component range will be the input of the SVM classifier. 

The error rate is then determined by the zero-one-loss function 

from the Python Library. It was based on the argument that the 

binary classification includes fraud detection. The minimum 

value of classification error is chosen from these error rate 

values. In other words, the classification error value for each 

component was calculated, and then the smallest error value 

was taken. 

The Minimum Classification Error (MCE) [22] is a type of 

discriminant analysis that reaches a minimum classification 

error using the gradient descent method. This method applies 

the loss function as a differentiated function of the 

misclassification size, defined as a close estimate of the actual 

misclassification. As such, the MCE algorithm is a more direct 

way to achieve a minimum misclassification level than 

conventional discriminatory training algorithms. This 

algorithm can be summarized in the following procedure: 

• Define a discriminant function with Simple Euclidean 

Distance: 

 𝐷𝑖
(𝑝)

= ‖𝑇𝑋(𝑝) − µ𝑖‖
2
 () 

𝑃𝐶1 = 𝑧𝑗𝑣𝑗1 = 𝑧1𝑣11 + 𝑧2𝑣21 + ⋯ + 𝑧𝑝𝑣𝑗1 

𝑃𝐶2 = 𝑧𝑗𝑣𝑗2 = 𝑧1𝑣12 + 𝑧2𝑣22 + ⋯ + 𝑧𝑝𝑣𝑗2 

 

𝑃𝐶𝑝 = 𝑧𝑗𝑣𝑗𝑝 = 𝑧1𝑣1𝑝 + 𝑧2𝑣2𝑝 + ⋯ + 𝑧𝑝𝑣𝑗𝑝 
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where T is the transformation matrix ranked d (d ≤ D), 

D is the original data dimension, and µi is the mean vector 

of class i. 

• Determine the size of the classification error by 

embedding the classification criteria in the overall 

minimum classification error formulation. 

() 

 

where gi(x
(p), Ʌ), i = 1, 2, ..., N is a set of discriminant 

functions; x(p) is the pth observation vector; N is the 

number of classes; Ʌ is the parameter set for each class; 

ζ represents a positive number for N-1. 

• Determine the Loss function as a monotonic sigmoid 

function suitable for the gradient algorithm to smooth the 

size of misclassification. The sigmoid function is used 

because it is a zero-one function suitable for the gradient 

algorithm. 

() 

 

The total loss function is defined as: 

 () 

 

E. Metrics for Evaluating Imbalanced Data 

Classification performance in imbalanced data domain is 

more effective if measured independently from positive and 

negative classes [4]. This measurement is based on the 

following confusion matrix in Table II. 

TABLE II.   CONFUSION MATRIX MODEL 

True 

Class 

Predicted Class 

Positive Negative 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN) 

From this confusion matrix model, appropriate metrics for 

imbalanced data can be formed, including precision, recall, and 

f1-score, expressed in the following formulas: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹𝑟𝑎𝑢𝑑)  =
𝑇𝑁 

𝑇𝑁+𝐹𝑁 
 () 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑁𝑜𝑛𝐹𝑟𝑎𝑢𝑑)  =
𝑇𝑃 

𝑇𝑃+𝐹𝑃 
 () 

 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑁 

𝑇𝑁+𝐹𝑃 
 () 

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑁𝑜𝑛𝐹𝑟𝑎𝑢𝑑) =
𝑇𝑃 

𝑇𝑃+𝐹𝑁 
 () 

TP reflects correctly classified positive instances, whereas 

FP means negative instances misclassified as TP. TN shows 

correctly classified negative instances, while FN reflects 

positive instances misclassified as TN.  

Precision and recall state how precise and robust a model is. 

These two metrics are linearly unrelated. If a model has good 

precision, it does not necessarily work well at recall, and vice 

versa. Another way to evaluate the model’s performance on 

imbalanced data is to take the harmonic average between 

precision and recall. This metric is called f1-score, which is 

expressed as follows: 

 F1 𝑠𝑐𝑜𝑟𝑒 = 2 .
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
 () 

In contrast, AUPRC is a trade-off between precision and 

recall using different probability thresholds. A perfect AUPRC 

means that the model can find all positive instances (perfect 

recall) without incorrectly classifying negative instances as 

positive (perfect precision). All of these metrics are more 

accurate when working with imbalanced data [23]. 

III. RESULTS AND DISCUSSION 

This section discusses the tuning results obtained from the 

selection of kernels and hyperparameters in SVM and the 

number of components for MebPCA based on classification 

errors. The model’s performance is evaluated using metrics 

such as precision, recall, f-measure (f1-score), and Area Under 

Precision-Recall Curve (AUPRC). In addition, the duration of 

training time is also a concern to assess the model’s 

performance. 

A. Parameters Selection for Training 

The best values of each parameter resulted from 5-fold 

Cross-Validation (CV) in the tuning process of the kernel and 

hyperparameter are shown in Figure 6. The use of 5-fold CV 

aims to reduce computation time while maintaining estimation 

accuracy. This is because the use of the default 10-fold cross 

validation on large data demands large computing resources 

and will require much longer computational time for 10 times 

subset splitting, training & testing. In addition, the opportunity 

for 1 subset for testing containing fraud data will be smaller 

because the fraud class is much smaller than non-fraud, so the 

testing subset will be biased. 

 
Figure 6. 5-Fold CV mean test score for each kernel 

Figure 6 shows that the best mean test score for each kernel 

is achieved in a combination of C and gamma parameter values. 

The best score of the linear kernel is achieved at a score of 

0.988084 when gamma (ɤ) = 0.1 and C = 100, while the RBF 

score 0.988294 is achieved when gamma (ɤ) = 1 and C = 93. 

The results of CV scores on poly kernels reach 0.997424, 

obtained when gamma (ɤ) = 10 and C = 55, and the sigmoid 

kernel reaches a score of 0.891262 when gamma (ɤ) = 0.001 

and C = 5. It can be seen that poly kernel is the best kernel, 

followed by RBF, linear, and sigmoid in sequence.  

Gamma (γ) is a parameter for a non-linear hyperplane 

kernel, it is used to control the speed of the learning process. 

While C is the penalty parameter associated with the error, it is 

is used to control the trade-off between hyperplane margins and 

classification errors.  

Furthermore, the number of principal components (N) for 

MebPCA was determined based on the MCE by utilizing the 

zero-one-loss library contained in the Python loss function 

library. The results of the Classification Error (CE) 

measurement for the application of MebPCA are shown in 

Table III. 

𝑑𝑘(𝑥(𝑝)) =  −𝑔𝑘(𝑥(𝑝), Ʌ) + ∑
1

𝑁 − 1
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖≠𝑘

𝑔𝑖(𝑥(𝑝), Ʌ) 

𝐿(𝑥(𝑝)) =
1

1 + 𝑒−𝛼𝑑(𝑥(𝑝),Ʌ)
 

𝐿 = ∑ 𝐿(𝑝)

𝑃

𝑝=1
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TABLE III.   CE-BASED N FOR MEBPCA DEPLOYMENT 

MebPCA Combined With 

SVM (linear) 
RUS + SVM 

(linear) 
RUS + Tuned_SVM 

N CE N CE N CE 

1 

2 

3 
4 

5 

6 

7 
8 

9 

0.016365 

0.015752 

0.014539 
0.014513 

0.004971 

0.004531 

0.004531 
0.004531 

0.004531 

1 

2 

3 
4 

5 

6 

7 
8 

9 

0.092593 

0.086370 

0.081532 
0.067619 

0.067539 

0.056984 

0.056984 
0.056984 

0.056984 

1 

2 

3 
4 

5 

6 

7 
8 

9 

0.129494 

0.108079 

0.105706 
0.012967 

0.009582 

0.005357 

0.005357 
0.005357 

0.005357 

The number of CE-based PCA components for MebPCA 

deployment forms a certain pattern trend. Trend in the results 

of classification error measurements for each number of 

MebPCA components are shown in Figure 7. 

 
Figure 7. Classification error for each number of MebPCA components 

Figure 7 shows that the number of components with the 

smallest classification error value is obtained at value n starting 

at 6 and converging to the next value of n. Therefore, the value 

of n=6 is used in the MebPCA implementation. A small error 

value does not significantly affect the classifier's performance. 

Thus, MebPCA speeds up computation time by reducing data 

dimensions and maintaining SVM performance. Then, the 

combination of parameters from the tuning is applied to the 

fraud prediction in the test set. 

B. Model Performance Evaluation 

The results of our re-measurement on various SVM 

combination models of previous studies and their comparison 

with our model results are shown in Table IV. Our model 

(RUS+Tuned_SVM+MebPCA) and previous model with a 

slight modification (RUS+Tuned_SVM [11]), being compared 

with the previous research model (RBF SVM [5]), are able to 

improve precisions from 0.58 to 0.75 and 0.76 or improvement 

of 29.31% and 31.03%. Improvement of f1-scores reached  

17.8% and 19.18% from 0.73 to 0.86 and 0.87, while the recall 

result increased by 2%. A slight change in previous study [11] 

was the application of stratified sampling to the dataset 

separation, which caused slightly different results to our current 

results. Whereas if it is compared with linear SVM model [12] 

or combined with RUS [24], are able to improve f1-score and 

recall perfectly. This has the effect of significantly improving 

the misclassified fraud.  

The RUS+SVM (Kernel:linear) model [24] did not use 

PaySim as the main dataset. Therefore, adjustment and re-

measurement of the model with PaySim was carried out. 

Likewise, the SVM (Kernel:linear) [12] model, even though it 

already used PaySim, but due to the number of samples was 

different, then re-measurements were also carried out. 

F1-score is the harmonic average of precision and recall. 

This measure shows how precise and robust a model is. In this 

case, it is important to have a trade-off between precision and 

robustness. When precision and recall are proportional to each 

other, the F1-score will be maximized. The F1-score will be 

degraded when only one of the metrics is optimized. Because 

F1-scores are available per class, for example fraud and non-

fraud classes, the F1-score for fraud classes will be more 

important than non-fraud classes. This is because it is more 

important to classify fraud cases correctly than non-fraud ones.

TABLE IV.   COMPARISON OF MEASUREMENT RESULTS 
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1. SVM (kernel=linear) [12] 0.96 0.75 0.84 0.96 00:08:36  

(516.02s) 

36 304 

2. SVM (linear) + MebPCA (n=6) 0.96 0.75 0.84 0.96 00:01:44 

(104.13s) 

36 304 

3. RUS + SVM (kernel=linear) [24] 0.22 1.00 0.36 0.85 00:00:01 

(1.24s) 

4,275 1 

4. RUS + SVM (linear) + MebPCA (n=6) 0.22 1.00 0.36 0.85 0.963s 4,275 1 

5. RUS+Tuned_SVM [11] 

(poly,γ=10,C=55) 

0.76 1.00 0.87 0.91 00:04:52  

(292.25s) 

377 2 

6. RUS+Tuned_SVM + MebPCA (n=6) 0.75 1.00 0.86 0.85 00:03:05 

(185.9s) 

399 3 

7. (SVM kernel RBF, class weight:16) [5] 0.58 0.98 0.73 0.98 - 436 7 
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It can be seen in Table IV that the implementation of 

MebPCA did not significantly degrade the classifier's 

performance. It only affected the duration of the model training. 

All methods in which MebPCA was applied had improved 

training time (training time was getting shorter). In contrast, the 

implementation of RUS caused performance degradation due 

to the reduction of majority (non-fraud) classes. It could be seen 

in the results of SVM (kernel: linear) [12] that the performance 

dropped after RUS was applied (RUS+SVM_Linear) [24], then 

the performance was improved again by tuning the kernel and 

hyperparameter (RUS+Tuned_SVM) [11]. 

Table IV also shows how the effect of applying RUS, 

MebPCA, and tuning to the kernel and hyperparameter in 

changing the classifier’s performance. This trend is shown in 

Figure 8 where RUS+Tuned_SVM+MebPCA significantly 

improve precision and the f1-score when compared to methods 

without any tuning or by default hyperparameters [RUS+SVM 

(linear)]. 

In Figure 8, the RBF kernel SVM model [5] and RUS+SVM 

(kernel=linear) [24] shows that the recall result is very high, 

while the precision is very low. In contrast, SVM (kernel: linear) 

[12] yields high precision with relatively low recall. These two 

situations cause the f1-score to be low because recall and 

precision are not balanced, so the AUPRC is biased.  A high 

recall causes the model to be able to predict fraud class well, 

while poor precision means that non-fraud class cannot be well 

predicted by the model in these studies [5], [24]. This model 

only tuned the class-weight parameter with preprocessing, 

which might differ from our study. On the other hand, a low 

recall causes the model [12] predict fraud incorrectly much 

larger than the error in predicting non-fraud. In addition, the 

handling of an imbalanced dataset was also not implemented, 

so the model was underfit because it did not get perfect training. 

Furthermore, AUPRC results in model RUS+Tuned_SVM 

& RUS+Tuned_SVM+MebPCA are shown in Figure 9 and 

Figure 10. The AUPRCs of both models were lower than the 

models [5], [12] because our AUPRCs reflected a broader and 

evener area under the curve due to more balanced precision and 

recall. As a result, our models could suppress misclassification 

in the fraud and non-fraud classes equally well. 

 

Figure 8. Effects of RUS, MebPCA and tuning parameters on SVM 

performance 

 

The measurement results on the confusion matrix for both 

models are shown in Table V. This table shows that both 

models can predict fraud and non-fraud classes well. In 

[RUS+Tuned_SVM], 377 (0.51%) non-fraud transactions were 

misclassified as fraud transactions, and 2 fraud transactions 

(0.16%) were misclassified as non-fraud. Whereas in 

[RUS+Tuned_SVM+MebPCA], 399 (0.54%) non-fraud 

transactions were misclassified as fraud, and 3 fraud 

transactions (0.24%) were mistakenly predicted as non-fraud 

transactions. A comparison of model training time to evaluate 

the effect of applying RUS and MebPCA is shown in Figure 11. 

 

Figure 9. AUPRC of RUS+Tuned_SVM 

 

Figure 10. AUPRC of RUS+Tuned_SVM+MebPCA 

TABLE V.   CONFUSION MATRIX RESULTS 

True Class 

Predicted Class 

RUS+Tuned_SVM 
RUS+Tuned_SVM+ 

MebPCA 
Non-

Fraud 
Fraud 

Non-

Fraud 
Fraud 

Non-Fraud 73,433 377 73,411 399 

Fraud 2 1,226 3 1,225 

In Figure 11, the combination of RUS and MebPCA 

together cuts the model training time significantly. This is 

because RUS handles imbalanced datasets and reduces model 

training time. Meanwhile, mPCA modifies the data dimension 

reduction technique based on classification error, which will 

not only speed up computation time, but also maintain SVM 

performance. If our two approaches are compared, it can be 

seen that there is a significant reduction in training time of 

36.39% in the [RUS+Tuned_SVM+MebPCA] method, 

although there is a slight decrease in the precision and f1-score 

results. 
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Figure 11. Comparison of model training time 

When dealing with a dataset with large dimensions but 

limited computing resources, the combination of 

[RUS+Tuned_SVM+MebPCA] was more suitable because it 

accommodated the speed of model training with good 

prediction results. Overall, it can be concluded that the 

MebPCA method maintains classifier performance or has no 

major impact on classification results, but it is significant for 

the computational time. 

From the results above, it can be seen that the under-

sampling method specifically handles class imbalances in the 

PaySim Dataset and shortens the model training time. SVM 

tuning was performed to improve the classifier’s performance, 

which had been declining due to the application of RUS. The 

best tuning results for Transfer transaction types are poly 

kernels with gamma=10 and C=55. The use of PCA helps 

reduce computing time significantly, but it risks degrading 

SVM performance due to reduced dataset dimensions. The 

application of MebPCA based on the Minimum Classification 

Error (MCE) cuts training time and maintains SVM 

performance so that MebPCA is better than PCA for 

classification purposes. The assessment to determine the 

number of components in traditional PCA is subjective, 

depending on the desired accuracy value. At the same time, 

MebPCA explicitly selects the number of components based on 

the lowest classification error value that does not interfere with 

the classifier performance. The number of components selected 

based on the lowest classification error value is 6. This number 

of PCA components is determined based on the Minimum 

Classification Error (MCE) which is calculated by utilizing the 

zero-one-loss library contained in the Python loss function 

library. This is based on the argument that fraud detection 

belongs to the category of binary classification. 

IV. CONCLUSION 

The research intends to combine the tuned SVM, RUS, and 

MebPCA methods in improving the performance of SVM in 

classifying fraud and non-fraud cases. The proposed model can 

reduce the number of misclassifications, predict fraud and non-

fraud classes well, and effectively provide better classification 

results when compared to the methods in previous studies or if 

it is run without parameters tuning, with a precision 

improvement of 29.31%, recall 2% and f1-score of 19.8% 

compared to the previous study. In addition, the proposed 

model also becomes efficient, which can significantly reduce 

training time without reducing classifier performance, with an 

improvement in training time efficiency of 36.39%. For further 

work, PaySim Dataset can be developed by modifying this 

dataset to accommodate digital currency transactions such as 

bitcoins that are not included in custodian bank services and 

electronic money. Then deep learning can be applied to predict 

the possibility of the emergence of new suspicious transaction 

patterns. Furthermore, transaction data analysis and processing 

can be performed with a graph database to provide a visual 

representation of transaction patterns as a recommendation for 

decision-makers. 
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