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Abstract— The deep learning-based object detector accuracy has surpassed conventional detection methods. 

Although implementation is still limited to hardware capabilities, this problem can be overcome by combining 
edge devices with cloud computing. The recent study of cloud-based object detector architecture is generally 

based on representational state transfer (RESTful web services), which uses a pooling system method for data 

exchange. As a result, this system leads to a low detection speed and cannot support real-time data streaming. 

Therefore, this study aims to enhance the detection speed in cloud-based object recognition systems using 

gRPC and Protobuf to support real-time detection. The proposed architecture was deployed on the Virtual 

Machine Instance (VMI) equipped with a Graphics Processing Unit (GPU). The gRPC server and YOLOv3 deep 
learning object detector were executed on the cloud server to handle detection requests from edge devices. 

Furthermore, the captured images from the edge devices were encoded into Protobuf format to reduce the 

message size delivered to the cloud server. The results showed that the proposed architecture improved 

detection speed performance on the client-side in the range of 0.27 FPS to 1.72 FPS compared to the state-

of-the-art method. It was also observed that it could support multiple edge devices connection with slight 

performance degradation in the range of 1.78 FPS to 1.83 FPS, depending on the network interface used. 
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I. INTRODUCTION 

One of the sub-fields of computer vision is object detection, 

which interprets and understands an image by correctly 

estimating the object's location and object classes in the frame 

[1]. This object detection task is often needed in daily life 

applications, such as surveillance, military, transportation, and 

medical [2]. The accuracy of deep learning detectors has 

recently surpassed conventional methods that rely on 

informative region selection, feature extraction, and 

classification. This condition is why numerous deep learning 

architectures have been introduced recently. Some popular 

detector architectures which the researcher introduced are: You 

Only Look Once (YOLO) [3], Region-based Convolutional 

Neural Network (RCNN) [4], Single-Shoot Multibox Detector 

(SSD) [5], RetinaNet [6], and EfficientDet [7]. Although most 

deep learning models have surprising accuracy, most models 

have high computational costs that are inappropriate for low-

power or slow computers. In contrast, object detection 

algorithms are generally needed to develop applications on 

cellular devices, embedded systems, and robotics with limited 

computational power and resources [8]. Merging edge devices 

and cloud computing can address hardware capability barriers 

in deep learning. A cloud server with scalable and high-

performance processing capability can manage the inference by 

receiving an image from the edge devices. The most frequently 

used method is the REpresentational State Transfer Application 

Programming Interface (REST API) offered by third-party 

services.    

Several studies have been conducted on these third-party 

object detection APIs. An example is the accuracy investigation 

of two commercial services, such as Microsoft Cognitive 

Services and Google Cloud Vision [9]. The results showed that 

both cloud services delivered a significant and acceptable 

accuracy level for running a helper application for blind people. 

Moreover, the accuracy comparison of the Tesseract Optical 

Character Recognition (OCR) and Google Cloud Vision for 

recognizing Thai vehicle registration certificates was 

investigated in [10]. It was discovered that Google Cloud 

Vision and Tesseract OCR achieved accuracies of 84.43% and 

47.02%, respectively. Similarly, Google Cloud Vision was 

proposed to build a vision system for people with no medical 

expertise [11]. The experimental results revealed a promising 

performance of the proposed technology as it can provide 

pertinent information about the given image. Finally, [12] 

presented that the Google AutoML service can automatically 

explore and train the model on the cloud. The user only needs 

to provide the image dataset, while the service automatically 

finds, trains, and infers the best model for the particular case. 

This experiment reported that Google AutoML attained an 

average accuracy of 91.6% during the model evaluation.  

Another study by [13] employed the Azure Machine 

Learning service to recognize the frailty and senility conditions 

of the elderly. The gait sequences were acquired through 

smartphones, and the Spatio-Temporal was analyzed to obtain 

the features. Afterward, these features are uploaded to the cloud 

as input data, and then the cloud generates a diagnostic result. 

Furthermore, [14] introduced an attendance system using a 

hybrid cloud-edge detection based on YOLOv3 for facial 

detection and the Microsoft Azure Face API for recognizing the 

human face in a database. The camera in the classroom 
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photographed students twice throughout the period, at the 

beginning and end, to ensure they attended the entire session. 

Some studies have developed a custom architecture for 

minimizing services cost using REST API that runs on a cloud 

server to provide service for edge devices. Examples include 

Transport for London (TfL) in [15], which utilized the 

YOLOv3 for the JamCam that is implementable on any 

computer with NVIDIA GPU. Furthermore, [16] presented a 

way of hosting a computer vision API on Amazon Web 

Services to recognize and classify multiple items in an image. 

The API accepted the user-supplied image and returned the 

object containing the most abundant color. Finally, [17] 

proposed a cloud-edge collaborative system using a YOLOv3 

object detector for an electronic gastroscopy system, and the 

framework achieved real-time performance for disease 

screening. 

The third-party cloud services' accuracy and precision for 

specific problems have been investigated in [9]–[14] regarding 

cloud edge collaborative object detection. However, studies on 

detection speed performance are limited, particularly on custom 

cloud-edge architectures. It has been observed that the 

proposed custom architecture by [17] still results in slow 

detection speed and is designed for a single client. Therefore, 

this study aims to improve the detection speed by proposing 

gRPC frameworks and Protobuf for cloud-edge communication 

schemes. The architecture is designed to handle multiple edge 

devices connection simultaneously with little performance 

degradation. The gRPC frameworks and Protobuf were 

demonstrated to handle multiple edge-device requests. 

Moreover, the computational speed of each sub-process was 

examined to discover its significant improvement. 

The remaining part of this article is arranged as follows. 

Section II discusses the study approach, which includes the 

object detection model and communication scheme between 

the cloud server and edge devices. Section III elaborates the 

proposed architecture's results by employing Raspberry Pi as 

an edge device. Finally, Section IV contains the summary of 

the results. 

II. METHOD 

The proposed architecture was designed by selecting a cloud 

server capable of implementing a deep learning-based object 

detector, considering the hardware capability. Furthermore, the 

YOLOv3 object detector was implemented on the cloud server, 

and optimized pre-trained weight was utilized to accelerate 

detection speed. Finally, a communication mechanism was 

established between the client and server using Remote 

Procedure Call (RPC), while images were compressed and 

encoded into serial data structures for the messaging system to 

accelerate data transmission. The following sub-sections 

describe the method employed in-depth. 

A. Cloud-Based Architecture 

Figure 1 shows the proposed cloud-based architecture 

consisting of a cloud server and edge devices. A Google Virtual 

Machine Instance (VMI) was used as the cloud server in 

Changhua City, Taiwan, and it was equipped with GPU 

NVIDIA Tesla K80, with 2.91 teraflops double-precision 

performance. It also consists of 2×virtual CPUs, 7.5 GB RAM, 

and 50 GB storage. Furthermore, a containerized application 

was delivered using Docker to ensure a simplified deployment, 

maintenance, and migration process. The program on the cloud 

server comprised a gRPC server, Protobuf Decoder, Protobuf 

Encoder, Image Preprocessing, and YOLOv3. The primary 

component of a deep learning object detector is YOLOv3, and 

the gRPC server manages data communication while the 

decoder/encoder translates the data format. Image 

preprocessing was used to preprocess image data before 

inference. 

The Raspberry Pi 3, a low-power embedded computer with 

a 1.2 GHz quad-core processor, was utilized as the edge device. 

The web camera was attached to the Raspberry Pi as a vision 

sensor, and the Ethernet or WiFi connection connects the edge 

device to the cloud server. Figure 1 shows the sub-process in 

the edge client. The edge client program utilized the gRPC Stub 

for communicating with the server. Meanwhile, there were sub-

processes on the edge device for capturing, displaying, and 

encoding/decoding images to the Protobuf format. The Client-

Server Communication section covers a detailed client-server 

communication scheme design. 

B. Deep Learning Object Detector 

The approach for recognizing objects was an optimized 

YOLOv3, which is an improved version of the YOLO base 

model [3] and YOLO9000 [18]. In order to detect objects, 

YOLOv3 takes the 416×416 pixels image and extracts image 

features using the Darknet-53 feature extractor. The Darknet-

53 feature extractor has a thicker layer, enabling it to achieve 

more accurate detection than the YOLO base model. 

Furthermore, due to the single-stage approach in YOLOv3, its 

detection time is quicker than other deep learning models. 

The YOLOv3 recognition process begins by partitioning 

the input image into 𝑛 × 𝑛 cell patch and assigning each ground 

truth object with the bounding box anchor. Furthermore, the 

output of the Darknet-53 feature extractor was used for 

predicting object classes denoted as 𝑡𝑜 and four box parameters, 

represented by 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ . The YOLOv3 bounding box is 

composed of four coordinate pairs, such as the bounding box's 

center point (𝑏𝑥 ,𝑏𝑦 ), the bounding box's width and height 

( 𝑏𝑤 , 𝑏ℎ ) [19], which were calculated from bounding box 

parameters by applying (1) - (4), and the object class was 

obtained from (5). 

 

Figure 1. Proposed cloud-based architecture 
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 𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 () 

 𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 () 

 𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 () 

 𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ  () 

𝑃𝑟(object) ∗ 𝐼𝑜𝑈(b, object) =  𝜎(𝑡𝑜) () 

The YOLOv3 predicted parameters and the bounding box 

is seen in Figure 2, where the variable 𝑐𝑥 and 𝑐𝑦 are denoted as 

the offset cell from the image origin coordinate. Function 𝜎(𝑡𝑥) 

and 𝜎(𝑡𝑦) generated the center point coordinates, which were 

defined from the cell's origin. The dashed rectangle shown 

provided information about the prior bounding box prediction, 

having a width and height of 𝑝𝑤 and 𝑝ℎ, respectively. 

Several studies have been conducted to optimize deep 

learning performance. For instance, the reduction of 

superfluous channels in the neural network by using the 

combination of Parameter Pruning (PP) with Feature-map 

Quantization (FQ) and Parameter Quantization (PQ) 

approaches [20]. These combinations led to SE model 

generation that was condensed by only 9.76% [20]. A 

systematic approach was also proposed for converting Tiny 

YOLOv2 floating-point weight to 8-bit fixed-point 

representation [21]. The results showed a significant reduction 

in hardware consumption with only 0.3% inaccuracy. This 

present study optimized the YOLOv3 by quantizing weights 

into a 16-bit floating-point representation, and the approach is 

similar to [22]–[25], which used NVIDIA TensorRT Optimizer 

for transforming and quantifying weights. In contrast with 

[22]–[25], which used the compact model in embedded GPU, 

this study was implemented on GPU located on the cloud server. 

C. Client-Server Communication 

This study focused on the client and server data exchange, 

including encoding/decoding image data. We utilized gRPC, a 

Google open-source request-response protocol framework that 

is cross-platform and language-independent. This RPC was 

used as an executor subroutines on several machines connected 

over a shared network [26]. Moreover, the gRPC was designed 

based on an HTTP/2 transport protocol, enabling bi-directional 

real-time data streaming. It was observed that sending 

uncompressed raw images was an inefficient communication as 

it potentially increased latency. Therefore, a defined 

compression format and communication protocol were 

required to facilitate the data transmission. 

It is important to note that JPEG was used to compress and 

reduce image data size and encode it into Protocol Buffer 

(Protobuf) structured data. Afterward, the gRPC Stub on the 

edge device requests service by sending this encoded data. The 

selection of Protobuf was based on a recent trade-off performed 

by [26], showing that Protobuf had a lower network load than 

JavaScript Object Notation (JSON) or Binary Javascript Object 

Notation (BSON) format. Moreover, the examination by [26] 

of the application layer's performance, messaging protocols, 

and binary serialization formats, concluded that although 

Protobuf's competitor, Constrained Application Protocol 

(CoAP), offers the lowest latency and overhead, it cannot 

ensure reliable transmission. Meanwhile, Protobuf supported a 

faster serialization and three-fold reduction in serialized 

messages compared to other serialization libraries like 

Flatbuffers [27]. 

Figure 3 shows a proto file constructed in the Protobuf 

format, comprising a single service and two message protocols 

for handling client-server communication. The DeepCam 

service includes a YOLORequest function, which inputs an 

ImgMessage and returns a YOLOMessage for processing edge-

devices requests. It is important to note that the ImgMessage 

and YOLOMessage were data exchange messaging protocols. 

The first helps to transmit encoded JPG image data from edge 

devices to the cloud server, while the second communicates 

detection results from the server to edge devices. 

YOLOMessage consists of structured data in boxes, scores, and 

labels that specify an object's Region of Interest (ROI), 

confidence score, and class name. 

Figure 4 shows the cloud server and edge devices' 

flowcharts. In Figure 4 (a), the cloud server first opens a 

dedicated port for gRPC communication while the server waits 

for a detection request from the edge device. When there is a 

detection request, the message has to be decoded into a raw 

image. The decoding converts the image into a Python Imaging 

Library (PIL) format, which is further transformed into a fixed 

square size of 416×416 pixels, and its values were normalized 

to the floating-point numbers 0-1 to match the input format for 

the YOLOv3. Furthermore, the cloud server executed the 

detection task on GPU to identify images' objects for producing 

boxes, scores, and labels. These boxes contained information 

about an object's bounding, while the scores represented the 

degree of confidence in an identified object, and the labels 

denoted an index to a particular label in the list of objects. 

Subsequently, this data was transformed into a byte array 

compatible with the Protobuf standard, and the cloud server 

sent the detection result via gRPC in Protobuf format. 

Figure 4 (b) shows the process of the client-side flowchart 

algorithm in which the edge device first established a gRPC 

connection with the cloud server. When the connection is 

successful, the edge device grabs an image from the camera 

 

Figure 2. YOLOv3 bounding box prediction 

 

Figure 3. Protobuf proto file 

 

syntax = "proto3"; 
package deepcam; 
service DeepCam{ 
    rpc YOLORequest(ImgMessage)  
        returns (YOLOMessage) {} 
} 
message ImgMessage{ 
    bytes img_data = 1; 
} 
message YOLOMessage{ 
    bytes boxes = 1; 
    bytes scores = 2; 
    bytes labels = 3; 
} 
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sensor and then resizes and encodes it into JPG format. 

Afterward, the JPG image is encoded into a 

YOLOMessage byte array known as Protobuf data. The edge 

device then invoked the DeepCam service to request a detection 

task, and the cloud server responds with a detection result 

message containing boxes, scores, and labels for the identified 

object. Finally, these boxes, scores, and labels returned from 

the server were marked using the OpenCV library to indicate 

the recognized object in the raw image. 

III. RESULTS AND DISCUSSION  

Several experiments have been conducted to evaluate the 

performance of the proposed approach. The first experiment 

was performed to determine the object detection's success, 

followed by the analysis of its speed on the client-side, 

conducted with one and two clients. The computation time for 

each sub-process was also measured, and the data obtained 

were compared with the cutting-edge techniques to identify the 

significant improvement achieved. The details of the obtained 

results are explained in the remaining section. 

A. Object Detection Result 

The proposed method was evaluated using an image 

captured from the edge device camera sensor. According to 

Figure 5, the cloud-based object detector successfully 

recognized the person and sports ball. The visualization on the 

edge devices showed three detected objects with a confidence 

score above 0.9. Furthermore, all detected objects have correct 

classes, and the system correctly marks their location. The 

detection speed was also visualized at the top left of the image, 

which described the total number of frames processed in one 

second. Figure 5 shows that the achieved detection speed for an 

image containing a sports ball and persons is 4.96 FPS. Our 

detection rate is slower than [25], which presented YOLOv4 

and TensorRT optimization on the embedded platform. They 

could attain detection rates higher, between 31.10 and 35.81 

FPS. Our system's slower detection rate is due to the latency of 

communication requests from the edge to the server. We will 

elaborate on this observation in the following sub-section. 

B. Detection on Single Edge Device 

The performance of the cloud object detection system in 

handling a proto-request from the single edge device was 

examined. First, we compared ethernet and WiFi interfaces to 

study the detection speed performance presented in Frame Per 

Seconds (FPS). It is important to note that the sub-processes in 

the system, which include capturing, resizing, encoding, and 

requesting detection results, were analyzed to evaluate the 

time-critical process. It was observed that the measured internet 

speed via ethernet interface has a download speed of 49.57 

MBps and an upload speed of 83.57 MBps. 

Table I describes the test results elaborated on ethernet 

interface with different image resolution inputs. It was 

observed that the maximum detection speed reached 

approximately 6.28 FPS with a 640×480 pixels image captured 

by the camera. The larger image resolution reduced the 

detection speed because the larger ImgMessage packet size had 

to be sent to the cloud server. Meanwhile, the most time-

consuming process was requesting the detection results from 

the cloud server, which took 127.94 ms to 178.29 ms. The 

second slowest sub-process was encoding the raw image data, 

which takes about 20.31ms to 141.40ms. This result means that 

image processing is associated with its resolution. 

Table II shows the system's performance in implementing 

the proposed method via WiFi interface. It was observed that 

the internet connection speed was 10.90 MBps and 15.31 MBps 

for download and upload, respectively. As a result, the 

maximum detection speed was achieved at 4.83 FPS with an 

image resolution of 800×448 pixels. Unlike the Ethernet 

connection, the detection speed of bigger images was 

sometimes faster compared to the small. For example, the 

detection speed with the resolution of 640×480 pixels achieved 

4.70 FPS, but when increased to 800×448 pixels, the detection 

speed rose to 4.83 FPS. This phenomenon is often affected by 

the unstable WiFi connection during the experiment.  This 

phenomenon was also reported by [27] while analyzing the 

latency of several protocols to transmit serialization data. It was 

therefore concluded that the time required by the process to 

request the detection results from the cloud server was 161.94 

ms. 

 

 

(a)                     (b) 

Figure 4. Flowchart on (a) cloud server and (b) edge devices 

 

 

 

Figure 5. Visualization of object detection results on edge devices 

 



22 Jurnal Teknik Elektro Vol. 14 No. 1 2022 

C. Detection of Multiple Edge Devices 

This section illustrates the performance evaluation of 

multiple edge device connections. Specifically, two edge 

devices were connected to the same router via Ethernet or WiFi. 

Before the experiment, both devices' download and upload 

speeds were measured. It was observed that during the Ethernet 

connection usage, the first edge device supported about 49.57 

and 83.57 MBps download and upload rates, while that of the 

second edge device had 55.16 and 92.45 MBps, respectively. 

These speeds slightly decreased when the devices were 

connected through WiFi. For example, the internet speed in the 

first edge device was 10.90 MBps and 15.31 for downloading 

and uploading, respectively, while in the second edge device, it 

was 13.71 MBps and 16.84, respectively. The detection speed 

reduction when the cloud server simultaneously handled the 

proto-request from multiple edge devices was further evaluated. 

Table III summarizes the implementation results of multiple 

edge connections on the Ethernet and WiFi interface. As 

described in Table III,  the detection speed discrepancies ranged 

from 0.01 FPS to 0.54 FPS while both devices connected 

through ethernet. The highest speed disparities occurred when 

the 960×540 pixels image resolution was utilized in edge 

devices. The maximum degradation detection speed of 1.83 

FPS was observed when detecting the 640×480 pixels image 

compared to the single device connection. Moreover, the drop 

detection speed fell when the system recognized a higher 

resolution image. For example, the FPS loss was only 0.42 in 

the 1920×1080 pixels image. 

The evaluation of using WiFi interface on both edge devices 

described that the differences in detection speed range were 

around 0.80 FPS to 2.80 FPS. It was observed that the highest 

differences were recorded when 960×540 pixels image was 

employed, while the lowest was obtained during the utilization 

of 1920×1080 pixels. Furthermore, the average multiple client 

detection speed on the WiFi interface varied between 0.07 FPS 

to 1.78 FPS compared to the single-client performance. In this 

scenario, the highest differences occurred when the 960×540 

pixels image was used, and the maximum degradation reached 

1.78 FPS compared to the single client detection speed. 

D. Comparison with State-of-the-art Method 

The detection speed of the proposed architecture was 

compared with the study in [17] to prove its significant 

improvement. We selected [17] because its approach utilized a 

similar edge-cloud collaboration and the same YOLOv3 model 

as the detector. However, it did not describe the image 

compression, encoding process, and model optimization but 

directly processed the raw image from the video. 

Table IV describes comparison results with the SOTA 

method. By head-to-head comparison using the same YOLOv3, 

our architecture improves detection speed by about 1.72 FPS 

while using the ethernet connection. Even using a WiFi 

connection, our method still resulting a faster processing time 

of about 0.27 FPS. Experimental results from [17] showed that 

the variation of the λ value slightly improves detection speed. 

However, it still cannot beyond our cloud architecture 

performance. 

TABLE I. DETECTION SPEED OF SINGLE EDGE DEVICE USING ETHERNET INTERFACE 

Image Resolution Capture Resize Encode Request Draw Detection Speed 

640×480 pixels 4.81 us 3.32 ms 20.31 ms 127.94 ms 1.68 ms 6.28 FPS 

800×448 pixels 3.89 us 11.01 ms 27.38 ms 135.55 ms 2.09 ms 5.54 FPS 
800×600 pixels 7.01 us 12.57 ms 30.69 ms 138.00 ms 2.01 ms 5.21 FPS 

848×480 pixels 5.26 us 9.11 ms 31.31 ms 136.17 ms 1.69 ms 5.45 FPS 

960×540 pixels 4.30 us 12.25 ms 38.93 ms 138.16 ms 1.71 ms 5.13 FPS 

1024×576 pixels 7.35 us 15.26 ms 48.45 ms 140.35 ms 2.04 ms 4.67 FPS 
1280×720 pixels 7.46 us 21.45 ms 60.13 ms 148.56 ms 2.14 ms 4.16 FPS 

1600×896 pixels 7.61 us 28.58 ms 99.02 ms 187.71 ms 1.94 ms 3.08 FPS 

1920×1080 pixels 5.08 us 24.89 ms 141.40 ms 178.29 ms 1.13 ms 2.86 FPS 

TABLE II. DETECTION SPEED OF SINGLE EDGE DEVICE USING WIFI INTERFACE 

Image Resolution Capture Resize Encode Request Draw Detection Speed 

640×480 pixels 4.21 us 2.33 ms 24.01 ms 179.41 ms 0.02 ms 4.70 FPS 

800×448 pixels 5.45 us 11.31 ms 28.37 ms 161.94 ms 0.02 ms 4.83 FPS 

800×600 pixels 6.71 us 10.27 ms 32.78 ms 178.85 ms 0.04 ms 4.39 FPS 

848×480 pixels 5.48 us 16.31 ms 37.69 ms 186.94 ms 0.02 ms 4.06 FPS 

960×540 pixels 4.40 us 10.94 ms 2.89 ms 174.02 ms 0.01 ms 4.48 FPS 

1024×576 pixels 8.62 us 18.46 ms 48.04 ms 205.74 ms 0.02 ms 3.56 FPS 

1280×720 pixels 5.15 us 15.63 ms 72.71 ms 213.98 ms 0.02 ms 3.27 FPS 

1600×896 pixels 5.06 us 20.07 ms 87.16 ms 271.21 ms 0.02 ms 2.62 FPS 

1920×1080 pixels 7.33 us 27.07 ms 120.64 ms 823.51 ms 0.02 ms 1.17 FPS 

TABLE III. DETECTION SPEED OF MULTIPLE EDGE DEVICES USING ETHERNET AND WIFI INTERFACE 

Resolution 
Detection Speed using Ethernet Interface Detection Speed using WiFi Interface 

Device 1 Device 2 Average Differences Device 1 Device 2 Average Differences 

640×480 pixels 4.46 FPS 4.45 FPS 4.46 FPS 0.01 FPS 3.66 FPS 4.59 FPS 4.13 FPS 0.93 FPS 

800×448 pixels 4.10 FPS 4.13 FPS 4.12 FPS 0.03 FPS 2.89 FPS 4.07 FPS 3.48 FPS 1.18 FPS 
800×600 pixels 4.14 FPS 4.12 FPS 4.13 FPS 0.02 FPS 3.32 FPS 4.24 FPS 3.78 FPS 0.92 FPS 

848×480 pixels 4.05 FPS 3.99 FPS 4.02 FPS 0.06 FPS 2.82 FPS 4.04 FPS 3.43 FPS 1.22 FPS 

960×540 pixels 4.11 FPS 3.57 FPS 3.84 FPS 0.54 FPS 1.30 FPS 4.10 FPS 2.70 FPS 2.80 FPS 

1024×576 pixels 3.23 FPS 3.42 FPS 3.33 FPS 0.19 FPS 1.17 FPS 3.10 FPS 2.14 FPS 1.93 FPS 
1280×720 pixels 3.75 FPS 3.49 FPS 3.62 FPS 0.26 FPS 2.29 FPS 3.12 FPS 2.71 FPS 0.83 FPS 

1600×896 pixels 3.85 FPS 3.34 FPS 3.60 FPS 0.51 FPS 0.84 FPS 2.45 FPS 1.65 FPS 1.61 FPS 

1920×1080 pixels 2.47 FPS 2.42 FPS 2.45 FPS 0.05 FPS 0.70 FPS 1.50 FPS 1.10 FPS 0.80 FPS 
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TABLE IV. COMPARISON WITH STATE-OF-THE-ART METHOD 

Method 
Detector 

Model 

Network 

Interface 

Maximum 

Detection 

Speed 

[17] YOLOv3 Unknown 4.56 FPS 

 YOLOv3(𝜆 = 1.5) Unknown 4.62 FPS 

 YOLOv3(𝜆 = 2.0) Unknown 4.59 FPS 

 YOLOv3(𝜆 = 2.5) Unknown 4.58 FPS 

Ours YOLOv3 Ethernet 6.28 FPS 

  WiFi 4.83 FPS 

IV. CONCLUSION  

The cloud architecture for object detection based on deep 

learning has been described. A communication mechanism was 

developed for real-time detection on multiple edge devices 

using gRPC and Protobuf. Experimentally, the object detection 

successfully runs on the proposed architecture. It was observed 

that the maximum degradation performance when handling 

multiple requests ranges from 1.78 FPS to 1.83 FPS. Compared 

to the state-of-the-art, the proposed architecture improved 

detection speed performance from 0.27 FPS to 1.72 FPS, 

depending on the network interface. The result of time 

consumption in each sub-process revealed that the highest time 

consumed was recorded when requesting data from the cloud 

due to the data payload. Further studies need to investigate 

other binary data-interchange formats to examine decreased 

latency affecting detection speed escalation. Several potential 

improvements are achievable by using a recent lightweight 

object detection model.  
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