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Abstract— The occupancy monitoring system is one of the substantial aspects of building management. 

Through monitoring the occupancy in the area in a building, the obtained information can be used for building 

management purposes such as controlling indoor area air quality and improving building security. Some 
technologies such as video surveillance cameras, Radio Frequency Identification (RFID), and motion sensors 

have been used in the occupancy monitoring system. However, those technologies pose several disadvantages 

including privacy concerns and limited information generated. A classroom occupancy monitoring system 

using an Internet of Things (IoT) device and the k-Nearest Neighbors (k-NN) algorithm was built to monitor 

classroom occupancy by classifying the number of occupants based on classroom environmental data into 

occupancy levels by using the k-NN classifier model. By utilizing IoT devices, CO2, temperature, and humidity 
data in a naturally ventilated classroom were recorded using the MQ-135 and BME280 sensors, as well as WiFi-

based NodeMCU, was used to distribute data to the cloud. The collected data were trained and tested by the 

k-NN algorithm to produce a k-NN classifier model. From the tests conducted, the performance of the k-NN 

classifier model in classifying the number of occupants into occupancy levels resulted in an accuracy of 88%. 

In addition, the proposed system also produces a web-based classroom occupancy monitoring application that 

has been integrated with the k-NN classifier model so the classification can be done for real-time data and 
monitored directly.  
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I. INTRODUCTION 

Occupancy monitoring is a substantial component of 

building management. The occupancy information obtained 

through monitoring an area in the building is beneficial for 

estimating hourly sales rates in commercial buildings, 

improving building security services, and providing 

opportunities to implement automated Heating, Ventilation, 

and Air Conditioning (HVAC) systems in the building [1]. 

Several technologies have been used in a building 

occupancy monitoring system such as video surveillance 

cameras, Radio Frequency Identification (RFID), and motion 

sensors. However, it has several disadvantages: privacy 

concerns and limited information generated to name a few. The 

use of IoT to monitor the number of occupants in a building is 

widely used to overcome the limitations of previous 

technologies by providing low-cost computing and data 

distribution flexibility [2], [3].  

Regarding occupancy monitoring, the indirect method is 

considered a good approach compared to the use of image and 

video processing which have privacy concerns in obtaining 

occupancy information [4]. The indirect method derives 

occupancy information by measuring the effect of the presence 

of occupants in their environmental conditions, where the 

change in its environment correlates with the number of 

occupants in the building [5]. The changes in environmental 

conditions due to the presence of occupants can be in the form 

of changes in CO2 concentration, temperature, humidity, and so 

on. 

The IoT device utilizes sensors to capture data on 

environmental changes in buildings due to the presence of 

occupants and distribute them for processing. Data processing 

using statistical and analytical methods such as machine 

learning is carried out to produce more accurate occupancy 

information. As in the previous study [1], a machine learning 

regression model was used in processing CO2, humidity, and 

temperature data to obtain classroom occupancy information. 

The study resulted in the quantile regression model having 

better performance than the linear regression model in 

estimating occupancy with the Mean Absolute Percentage 

Error (MAPE) metric of 2.51%.  

The study [6] found that the use of non-linear machine 

learning models such as k-Nearest Neighbors (k-NN), Support 

Vector Machine (SVM), and Decision Tree (DT) resulted in 

better accuracy in providing occupancy information than linear 

models. It is said that the linear model has strong assumptions 

on the distribution of the data so that it is vulnerable to outliers 

and produces lower performance accuracy than non-linear 

models. As in study [7], eight machine learning models were 

used to detect occupancy in an office, including linear and non-

linear models. Using the office space temperature and humidity 

data, the study suggested the non-linear model, k-NN 

performed the best on the dataset with an auROC metric value 

of 0.77. A similar study [3] used three non-linear models to 

estimate occupancy levels in closed spaces. By using 

temperature, humidity, and pressure data, the results show that 

the k-NN model worked the best with an accuracy of 97%. 

Previous studies [3], [7] have motivated this study to 

explore the use of a non-linear machine learning model, k-NN, 
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in occupancy monitoring by using different environmental 

variables. In this study, the CO2, temperature, and humidity 

data of the classroom will be used to train a model/classifier 

using the k-NN algorithm. The use of CO2, temperature, and 

humidity data have a correlation that can provide the 

information needed in the occupancy monitoring system [8]. 

In a recent study, the use of CO2 to obtain occupancy 

information has been carried out, as in [9], Bayesian filtering 

with Extreme Learning Machine (ELM) was used to estimate 

indoor occupancy and resulted in an estimation accuracy of 

77.29%. A similar study [10] with a single sensor to capture 

CO2 was carried out to estimate occupancy levels in lab offices 

using SVM, Infinite Hidden Model Markov (IHMM), and 

Classification and Regression Trees (CART) which obtained an 

estimation accuracy of 82.5%. The combining use of CO2, 

temperature, and humidity along with humidity ratio and light 

information to obtain the occupancy levels was carried out in 

[11], using the ELM model and CART parameters, resulting in 

an accuracy of 94.52%. 

The generated occupancy information in this study is the 

result of classifying the number of occupants into 3 occupancy 

levels, namely low, medium, and high. Most of the previous 

similar studies found that information about occupancy was 

limited to the presence of occupants and occupied/unoccupied 

state. Classification into occupancy levels can be considered a 

good approach to obtaining occupancy information that applies 

to the use of IoT devices, especially when monitoring 

occupancy in densely populated environments [3]. As with the 

monitoring system, a web-based monitoring application was 

built in this study to display occupancy information resulting 

from classifying the number of occupants by the k-NN 

classifier model based on IoT device data which is CO2, 

temperature, and humidity in real-time. 

This study is presented in four sections: introduction, 

method, results and discussion, and conclusion. The 

introduction section describes the background of the problem, 

relevant literature, and the proposed approach of this study. The 

second section describes the research methodology of this study. 

The third section explains the analysis of the results and 

discussion of this research, and the last part is the conclusion of 

this study. 

 

 

 

 

 

II. METHOD 

This section describes how the classroom occupancy 

monitoring system was built, starting by collecting dataset 

using IoT device, setting up the cloud to store the data, 

processing dataset using the k-NN algorithm, and integrating 

the k-NN model classifier with a web-based user interface for 

classroom occupancy monitoring. 

Figure 1 shows the system flow in a block diagram 

consisting of Input, Process, and Output. The Input part is the 

IoT device consisting of the NodeMCU ESP8266, the MQ-135, 

and the BME280 sensors, which collect the dataset. The IoT 

device schematic and its explanation are shown in detail in 

Figure 2 and Table I. The Process part shows the system flow 

from storing the collected dataset by the IoT device to 

ThingSpeak cloud, processing the exported dataset from the 

cloud by the k-NN algorithm in Jupyter Notebook, and 

integrating the k-NN model with a web-based monitoring 

application in Visual Studio Code. The Output part shows the 

k-NN classifier model that has been integrated with a web-

based classroom occupancy monitoring application. In addition, 

the flow represented by the line between ThingSpeak and the 

Web User Interface in the block diagram shows data in the 

cloud will be displayed in real-time in the web-based 

occupancy monitoring application during the testing phase. 

A. IoT device for Dataset Collection 

The proposed system used an IoT device to collect the 

dataset, where the IoT device was designed using a WiFi-based 

NodeMCU ESP8226 as the main microcontroller to receive and 

transmit sensor data, as well as the MQ-135 and BME280 

sensors which were used to capture changes in CO2, 

temperature and humidity in the classroom. Figure 2 shows a 

circuit schematic of the IoT device that connects each 

component according to their needs based on a data sheet. 

Table I provides an explanation of the interface of each 

component in this IoT device. 

 

Figure 1. Block diagram of system 

 

Figure 2. Schematic of an IoT device in classroom occupancy monitoring system
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TABLE I.   NODEMCU ESP8266 PIN INTERFACE WITH SENSOR 

COMPONENTS  

No. 
Pin 

Function 
NodeMCU Peripheral 

1. A0 AOUT Receiving and sending CO2 

data between NodeMCU and 
MQ-135 sensor 

2. D1 SCL Synchronization clock 

between NodeMCU and 

BME280 sensor 

3. D2 SDA Receiving and sending 

temperature and humidity data 

between NodeMCU and 
BME280 sensor 

4. VU VCC 5V power source from 

NodeMCU USB socket, used 

by MQ-135 sensor 
5. 3V3 VIN 3.3V power source, used by 

BME280 sensor 

6. GND GND Ground power source 

The calibration of the MQ-135 sensor was conducted before 

being implemented on the IoT device to properly capture the 

CO2 target gas. Prior to that, pre-heating of the sensor was 

carried out for 24 hours in an empty classroom to ensure that 

the sensor gets calibrated properly to produce a stable Ro 

resistance value [12]. Calibration begins by taking the Ro value 

at a certain temperature and humidity conditions in the 

classroom. After obtaining the value of Ro, the resistance Rs 

can be calculated using the voltage divider rule in (1). Based on 

the sensitivity characteristic diagram of MQ-135 [13], the ratio 

of the two resistances (Rs/Ro) is used to obtain the CO2 

concentration or the relationship between the two is expressed 

in Rs/Ro = f(ppm). 

𝑅𝑆 =  
𝑉𝐶  𝑥 𝑅𝐿

𝑉𝑅𝐿
− 𝑅𝐿 (1) 

where VC is the test voltage, VRL is the drop of voltage on load 

resistance and RL is the load resistance of MQ-135 based on 

datasheet recommendation (22KΩ).  

The proposed system also addresses the possible influence 

of external conditions on sensor readings due to the presence of 

natural ventilation in the classroom. The magnitude of this 

influence is represented as a sensor error calculation due to the 

presence of natural ventilation to see whether the dataset read 

by the sensor can represent the actual conditions in the 

classroom. To find out the magnitude of the sensor error, a 

comparison was made between the readings of the MQ-135 and 

the calculation of CO2 levels involving the opening area in the 

classroom. This comparison was made only on the MQ-135 

sensor considering that CO2 gas is more susceptible to being 

disturbed by external influences such as wind and so on, 

compared to temperature and humidity whose changes take 

time and are relatively constant. 

Calculations involving the opening area are calculated using 

the equations below. Equation (2) is used to calculate the CO2 

concentration in the classroom after the t interval, involving the 

average concentration of CO2 produced per occupant (G) at 

medium to low-intensity activities and conditions exchanged 

with the outside through natural ventilation [14], [15], where G 

for the number of occupants of 14 people is 2,856 l/hour. Then, 

the values of k and ACH in (2) are expressed in (3) and (4), 

respectively. 

𝐶(𝑡) = 𝐶𝑒𝑥𝑡 +  𝑘 − (𝐶𝑒𝑥𝑡 −  𝐶𝑜 +  𝑘). 𝑒−𝐴𝐶𝐻.𝑡/3600 (2) 

 

𝑘 =  
𝐺. 106

0.65 𝑥 𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 (𝑚2)
 (3) 

 

𝐴𝐶𝐻 =  
0.65 𝑥 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑 𝑥 𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 (𝑚2)𝑥 3600

𝑟𝑜𝑜𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚3)
 (4) 

with Cext is the external CO2 concentration (ppm), Co is the 

initial CO2 concentration in t interval (ppm), t is the 

measurement time interval (s), G is the average concentration 

of CO2 per occuppants (m3/s), and ACH is the air change per 

hour for ventilated room (h-1). 

After the IoT device setup was complete, dataset collection 

was carried out for seven days at 4-hour occupants' active 

sessions per day in a classroom from the building. The IoT 

device is placed at the back of the class to avoid direct 

interference from occupants and in the breathing height zone 

for occupants in a sitting position [16], as shown in Figure 3. 

 
(a) 

 

 
(b) 

 
(c) 

Figure 3. Placement of IoT device at (a) behind the classroom, (b) refers to 

the height and area opening of the classroom, and (c) the position of the 

classroom from the whole building 
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The collected dataset by the IoT device will be sent to the 

ThingSpeak cloud in 15-second intervals. In addition, 

calculations involving the opening area were carried out on the 

same day during dataset collection to directly compare the 

values under the same temperature and humidity conditions. 

The classroom opening area can be calculated referring to the 

class opening area described in Figure 3(b). 

B. ThingSpeak Cloud Configuration for Dataset Storage 

ThingSpeak cloud configuration was conducted to create 

channels for storing the dataset and generating an API Key. The 

IoT device microcontroller, NodeMCU ESP8266, used the 

Write API Key to send the dataset to the created cloud channels. 

In the main channel of the cloud, 3 fields will store CO2 (field 

1), temperature (field 2), and humidity (field 3) data in real-

time with an update time of 15 seconds, while the second 

channel was made to calculate the value of the standard 

deviation and kurtosis of each field in the main channel which 

will only be used in testing phase on the occupancy monitoring 

application. In addition, the values on the two channels will be 

displayed during the testing phase on the web-based occupancy 

monitoring application every 5 minutes as new input data to 

classify the number of occupants into classroom occupancy 

levels. 

C. Dataset Processing by k-NN Algorithm 

The dataset collected in the ThingSpeak cloud was exported 

into a CSV file for processing by the k-NN algorithm in Jupyter 

Notebook. Figure 4 shows a dataset processing flow diagram 

using the k-NN algorithm starting from dataset labeling, dataset 

pre-processing, and dataset training and testing with the k-NN 

algorithm to produce the k-NN classifier model. 

 

Figure 4. Dataset processing flow diagram using k-NN algorithm 

Dataset labeling was done manually referring to the level of 

occupancy recorded during dataset collection. The level of 

occupancy was established by dividing the number of 

occupants proportionally based on the maximum number of 

class occupants, namely 14 occupants, so the labels for each 

class are Low (0-4), Medium (5-9), and High (10-14). 

After labeling, pre-processing was done by resampling the 

dataset for different time resolutions of 10 min, 5 min, and 1 

min, with the aim of overcoming the sensor waiting time due to 

the non-temporary effect of occupants on classroom 

environmental conditions [17]. In addition, standard deviation 

and kurtosis features were added to each of the CO2, 

temperature, and humidity, so there were a total of 9 features in 

the dataset. The addition of these features aims to make the k-

NN classifier model able to distinguish the occupancy levels 

with precise accuracy since the standard deviation can provide 

information about the distance between the attribute with its 

mean, while the kurtosis represents the frequency of extreme 

attributes [3], [7]. 

In k-NN, k is a hyperparameter that represents the number 

of nearest neighbors in the dataset. The starting point for 

searching the k value is typically by using the square root of the 

total number of data [18], where 918 collected data points in 

this study can use the range of k up to √918
2

≈ 30 to find the 

optimal k value. The search for the optimal k was carried out 

by using the k-fold cross-validation method which is preferable 

over splitting the data method that is impractical and does not 

represent the generalization of the dataset. By using the k-fold 

cross-validation, each k value in the range 1-30 will be tested 

using 10 folds. The selection of the number of folds was based 

on the size of the data since there is no universal rule, but 10 

folds were often used to obtain a lower error prediction [19], 

[20].  In this study, the 918 data points were distributed evenly 

into 10 folds which resulted in a fairly balanced data variation 

compared to the use of other folds, where the composition of 

the data for high, medium, and low occupancy levels in each 

fold was 2:1:1, respectively. 

The pre-processed dataset will be trained and tested by 

dividing it into a ratio of 80%:20%, taking into account that the 

composition of each occupancy level is 2:1:1 in each training 

and testing set. The comparison ratio was chosen by 

considering the size of the dataset where 20% of the data is 

considered sufficient to validate the k-NN classifier model with 

a single hyperparameter. Furthermore, training of 80% of the 

data with the Euclidean Distance of the k-NN algorithm was 

carried out to produce a k-NN classifier model that can find the 

k-nearest neighbors. K-nearest neighbors will later determine 

the occupancy level of the new input data based on the majority 

of the classifications on the k data. Using (5), the distance 

between the new data point (x) and data point (y) in the dataset 

is calculated as follows. 

d(x, y) = |x − y| =  √∑(xi −  yi)
2

n

i=1

 (5) 

where 𝐱𝐢  is the Euclidean vector of new data point,  𝐲𝐢  is 

Euclidean vector starting from the initial point in the dataset, 

and n is number of observations. 

The performance of the trained k-NN model will be tested 

using test data in the Confusion Matrix. In the Confusion 

Matrix, the characteristics of True Positive, False Positive, True 

Negative, and False Negative are used to determine the 

performance metrics of the k-NN classifier model. The 

performance metrics from the confusion matrix were then used 

to measure precision, recall, f-1 score, and accuracy, which 

were calculated using (6), (7), (8), and (9), respectively. 

Precisionlevel =  
TPlevel

TPlevel +  ∑ FPlevel
  

 

(6) 

Recalllevel =  
TPlevel

TPlevel + ∑ FNlevel
 

 

(7) 

f1 − scorelevel =  
2 x Precisionlevel x Recalllevel

Precisionlevel +  Recalllevel
   (8) 
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Accuracy =  
TP + TN

TP + FP + TN + FN
 (9) 

where TP is the True Positive, FP is the False Positive, FN is 

the False Negative, and TN is the True Negative. 

The k-NN classifier model that has been tested was 

deployed with the help of the Python Pickle library to generate 

a pickle file (.pkl) which will be integrated with a web-based 

classroom occupancy monitoring application. 

D. Integrating k-NN Classifier Model with a Web-based 

Classroom Occupancy Monitoring Application 

The deployed k-NN classifier model was integrated with a 

web-based classroom occupancy monitoring application. The 

web-based application was built using HTML, Bootstrap 

framework, and Python Flask in Visual Studio Code, where a 

knn.html page was created to display classroom environment 

data received via the cloud API in real-time at 5-minute 

intervals and used for classification by the classifier model k-

NN, also an index.html page was created as route app 

@app.route('/') or the initial page when the user accesses the 

occupancy monitoring application domain. The k-NN classifier 

model was integrated into the knn.html page with the help of 

render_template from the Flask library so that the model can 

classify the number of occupants based on new input data, 

classroom environment data, from the cloud and produce 

classroom occupancy level output on that page. 

III. RESULTS AND DISCUSSION 

This section discusses the results obtained from testing the 

performance of the k-NN model in classifying the number of 

occupants into occupancy levels. In addition, it will explain the 

tuning results of the k-NN hyperparameter values using k-fold 

cross-validation. Testing on web-based occupancy monitoring 

applications, testing on IoT sensors, and analysis of the 

environmental effect on the system will also be discussed in this 

section. 

A. MQ-135 Sensor Testing 

In the MQ-135 sensor test, the RO value was taken in a 

classroom with a temperature of 26°C and humidity of 69%, 

with a sensor RL value of 22KΩ. With the RO value obtained 

through measurements in this study, which is 10700Ω, Table II 

shows the data from the test results on the MQ-135 sensor. The 

test results were used to see the relationship between the 

measured CO2 concentration and the Rs/Ro resistance value 

shown in the graph in Figure 5. 

TABLE II.   MQ-135 SENSOR TEST RESULTS 

No. RS (Ω) RS/RO CO2 (ppm) CO2 (Log) 

1. 6780.0 0.63000 420.53 2.6237 

2. 6816.9 0.64000 413.99 2.6169 

3. 6853.9 0.64000 407.58 2.6102 

4. 6743.3 0.63000 427.19 2.6306 

5. 6670.1 0.62000 440.89 2.6443 

6. 6965.2 0.65000 389.02 2.5899 

7. 6706.6 0.63000 433.98 2.6374 

8. 7040.6 0.66000 377.20 2.5765 

9. 7002.6 0.65000 383.05 2.5832 

10. 6345.1 0.59000 509.37 2.7070 

Note: The RO value was taken during calibration where this value is a constant 

sensor resistance at certain classroom temperature and humidity conditions. 

Extreme changes in both conditions will change the value of RO. The RS value 

is the sensor resistance which is always changing due to interaction with the 

CO2 target gas. The CO2(ppm) value is the RS/RO ratio according to the MQ-

135 sensitivity chart on the datasheet which is stated in f(ppm) = RS/RO. 

 

Figure 5 shows an inverse relationship between CO2 

concentration with the RS/RO resistance value. The trend line in 

the graph in Figure 5 has the characteristic sensitivity of MQ-

135 for CO2 gas which is in accordance with the datasheet, 

when the sensitive material of the MQ-135 sensor increases in 

conductivity which indicates an increase in CO2 levels, the 

RS/RO resistance value will decrease, and vice versa. This 

concluded that the MQ-135 was able to capture changes in CO2 

gas in the classroom where the research was conducted. 

The graph of the relationship between CO2 concentration 

and RS/RO resistance also produces a regression equation that 

indicates linearity through y = -0.5134x + 1.9801 and the 

determination value (R2) is 0.9808. The determination value 

represents 98.08% of the variation that can be predicted using 

the y regression equation and the remaining 1.92% are other 

factors that affect the concentration of CO2 gas in addition to 

sensor resistance such as room temperature and humidity, and 

gas pressure. 

 
Figure 5. Graph of relationship between CO2 concentration and resistance 

ratio RS/RO 

Furthermore, a comparison was made between the obtained 

CO2 levels obtained through MQ-135 and the CO2 levels 

calculated by involving the opening area in the classroom. With 

a total opening area in the classroom of 10,45 m2, Table III 

shows comparison results for seven days. In calculating the 

CO2 concentration involving the opening area, the CO2 

concentration produces a constant value of 414.78 ppm. These 

results were obtained as a result of using the outdoor CO2 

concentration value (Cext = 414.67 ppm) and the average CO2 

concentration produced by the occupants (G = 2.856 l/h) was 

constant. 

TABLE III.   CO2 CONCETRATION COMPARISON RESULTS 

Day 
CO2 Concentration by 

MQ-135 (ppm) 

CO2 Concentration by 

Calculations Involving 

Opening Area (ppm) 

1. 451.43 414.78 

2. 369.86 414.78 

3. 417.63 414.78 

4. 377.04 414.78 

5. 369.31 414.78 

6. 456.52 414.78 

7. 408.67 414.78 

Mean 407.21 414.78 

The difference in CO2 concentration obtained by reading 

MQ-135 with calculations involving the opening area is 7.57 

ppm. The difference between the two concentrations is also 

calculated using a relative error and produces a percentage of 

error by the sensor of 1.825%. Based on the relative error value 

obtained by the sensor, it can be concluded that there is an 

external effect due to the presence of natural ventilation but 



41 Jurnal Teknik Elektro Vol. 14 No. 2 2022 

does not give a significant effect on sensor readings. Factors 

that influence these results include the location of the classroom 

which is not directly exposed to the wind inflow and the use of 

natural ventilation shows a slow effect on changes in classroom 

conditions. Even though the MQ-135 sensor has been able to 

capture data that represents the state of CO2 in the classroom, 

there is a drawback in using the MQ-135. Compared to [21] 

using the Building Integrated Control Test-bed (BICT), the use 

of MQ-135 to collect ground truth occupancy profiles and CO2 

dataset in a naturally ventilated classroom requires repeated 

calibration of the constant Ro value when extreme temperature 

and humidity changes occur. 

B. BME280 Sensor Testing 

Testing the accuracy of BME280 sensor readings in 

detecting classroom temperature and humidity was carried out 

by calculating the average difference between the sensor 

readings and the digital thermometer as a standard meter. Table 

IV and Table V are test results for the BME280 sensor, 

respectively, as a measure of classroom temperature and 

humidity. Based on the Tables, the tests performed 10 times on 

the BME280 sensor for temperature and humidity 

measurements resulted in an average difference of 0.276°C and 

0.657%, respectively. The difference in values indicates an 

accuracy offset where the accuracy tolerance on the datasheet 

is ±1°C and ±3%, which means that the sensor can capture 

classroom temperature and humidity with an acceptable error. 

TABLE IV.   BME280 SENSOR TEST RESULTS FOR TEMPERATURE 

No. BME280 (°C) Thermometer HTC-1 (°C) ∆ (°C) 

1. 28.66 28.00 0.66 

2. 28.69 28.00 0.69 

3. 28.73 28.30 0.43 

4. 28.78 28.70 0.08 

5. 28.83 28.70 0.13 

6. 28.85 28.70 0.15 

7. 28.85 28.70 0.15 

8. 28.83 28.70 0.13 

9. 28.87 28.70 0.17 

10. 28.87 28.70 0.17 

TABLE V.   BME280 SENSOR TEST RESULTS FOR HUMIDITY 

No. BME280 (%) Thermometer HTC-1 (%) ∆ (%) 

1. 61.05 61.00 0.05 

2. 60.51 61.00 0.49 

3. 59.58 61.00 1.42 

4. 59.40 60.00 0.60 

5. 59.33 59.00 0.33 

6. 59.07 58.00 1.07 

7. 58.97 59.00 0.03 

8. 59.69 58.00 1.69 

9. 58.18 58.00 0.18 

10. 58.29 59.00 0.71 

C. k-NN Hyperparameter Search by k-Fold Cross Validation 

Testing the value of k for the range 1-30 was carried out 

with 10-fold iterations resulting in the best k value of k=1 with 

86% accuracy and k=5 with 85.9% accuracy, as shown in 

Figure 6. However, the use of k=1 was not applied to the model 

because the classification will be made based only on a single 

nearest neighbor who has similar data, this typically led to 

overfitting. In addition, there was a decrease in the accuracy 

along with the increase of k as shown in Figure 6. The accuracy 

decreased because it was calculated based on an average of 10-

folds, where an increase in the k means that there are more 

nearest neighbors but the distance value is further away so the 

average accuracy has a larger bias error. Thus, only k in a 

certain range of values will produce optimum accuracy, but 

after passing the optimum limit there will be a decrease in 

accuracy. 

 
Figure 6. Optimal k values of k-NN obtained through k-fold cross validation 

D. k-NN Classifier Model Performance Test 

The performance test on the trained k-NN classifier model 

was carried out by using a Confusion Matrix. The confusion 

Matrix shown in Figure 7 was generated by using a test set in 

the testing phase. The metrics used in evaluating the 

performance of the k-NN classifier model using the Confusion 

Matrix are precision, recall, and f-1 score for each occupancy 

level as presented in Table VI. 

 
Figure 7. Confusion matrix 

TABLE VI.   RESULTS OF K-NN MODEL PERFORMANCE 

Occupancy Level Precision Recall F-1 Score 

Low 96% 89% 93% 

Medium 81% 72% 76% 

High 88% 95% 91% 

Macro Average 88% 86% 88% 

Accuracy 88% 

Note: Precision, Recall, F-1 score and Accuracy are the results of the Confusion 

Matrix calculations in Figure 7, where the calculation involves 4 characteristics 

of the Confusion Matrix which are calculated using equations (6-9). 
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Figure 8. Classification result by k-NN classifier model tested on classroom occupancy monitoring application 

The performance evaluation results of the k-NN classifier 

model yield a precision of 88%, recall of 86%, and an f-1 score 

of 88%. Then, the accuracy of the k-NN model to classify 

correctly based on the actual value of the total data produces an 

accuracy of 88%. As referred in the k-fold cross-validation test, 

there is an accuracy difference for the use of k=5. This occurs 

due to different dataset handling where the k-fold cross-

validation used the entire dataset in rotation fold as test data 

while the confusion matrix used a split dataset where the model 

was tested by using test data that comes from 20% of the dataset. 

This study obtained 88% accuracy in generating occupancy 

information by utilizing a combination of CO2, humidity, and 

temperature data, resulting in better accuracy than studies that 

used single CO2 data [5], [6]. In addition, the use of the k-NN 

algorithm on combined data also results in better accuracy than 

in the previous study [7]. This result occurs due to several 

factors, such as standard deviation and kurtosis features 

addition that mentioned in [3] being able to provide insight to 

produce better occupancy information. 

E. Implementation of k-NN Classifier Model to a Web-based 

Monitoring Application 

In the web-based classroom occupancy monitoring 

application, the implemented k-NN classifier model will 

classify the number of occupants based on changes in class 

environmental conditions to occupancy levels. Testing was 

carried out on a monitoring web application, where the form on 

the knn.html page was used to manually fill in class 

environmental data received via the cloud for an update time 

every 5 minutes. The form has a submit button that functions to 

display the results of the classification by the k-NN classifier 

model and the calculation distance by Euclidean Distances, 

which were displayed in the table by providing the nearest 

distance data as much as k data (k = 5). Figure 8 shows the test 

results on the knn.html where the classification results from the 

input data produce a high occupancy level. With reference to 

the Euclidean Distances table on that page, the high-level 

occupancy classification is correct according to the majority of 

classifications in the table where there are closest neighbors 

with 3 data classified as Class 3 (High Level) and 2 data 

classified as Class 2 (Medium Level). Overall tests on the web-

based classroom occupancy monitoring application show that 

the implemented k-NN classifier model can perform 

classification and produce classification results in the form of 

classroom occupancy levels that can be monitored directly.  

IV. CONCLUSION  

A system to monitor classroom occupancy has been 

successfully built. This study used the k-NN machine learning 

approach on classroom environmental data such as CO2, 

temperature, and humidity data captured by the IoT device. The 

dataset has been successfully trained and tested using the k-NN 

algorithm, resulting in a k-NN classifier model that can classify 

the number of occupants into 3 occupancy levels, namely low, 

medium, and high. The performance testing of the k-NN 

classifier model produces measurement metrics for each 

occupancy level of 88% precision, 86% recall, 88% f-1 score, 

and 88% accuracy. It is important to highlight that performance 

metrics were achieved under the following conditions: use of 

temperature, humidity, and CO2 data in a naturally ventilated 

classroom; use of datasets obtained from occupants' active 

hours due to limited permits caused by the pandemic. In 

addition, a web-based classroom occupancy monitoring 

application has also been built and integrated with the k-NN 

classifier model, so the classification can be done for real-time 

data and makes it easier for users to monitor classroom 

occupancy levels directly. For future research, we suggest 

exploring the use of data other than CO2, temperature and 

humidity, and other machine learning models. Further 

improvement on a web-based occupancy monitoring 

application can also be done to automatically classify 

occupancy levels. 
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