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Abstract— Lithium-Ion (Li-ion) battery is essential in today's energy systems and electric vehicles (EVs). 
Although Li-ion battery can be charged quickly and have a high energy density, it has several drawbacks, 
including the rapid degradation of battery performance, especially in terms of battery capacity. Therefore, 

evaluating its performance degradation is necessary to understand its characteristics. In this paper, the 
performance degradation of a Li-ion battery is monitored and evaluated from multiple SoC measurements. A 
simple and low-cost experimental setup consisting of sensors, a microcontroller, and a PC is developed to 
measure and record the real-time data of Li-ion battery voltage and current. Then, the battery state of charge  
(SoC) is determined using the Coulomb Counting method, which is based on the incoming and outgoing 
currents of the battery. As a result, this study derives three parameters that indicate the performance 
degradation of a Li-ion battery, i.e., SoC, battery capacity, and discharge time. From multiple direct 
measurements with constant load and C20 discharge process, the minimum SoC value increases from 11% to 
18%, while battery capacity decreases from 8.8Ah to 8.3 Ah and, discharge time decreases from 16.9 hours to 
16.4 hours. All of those parameters indicate a degradation of around 7% in battery performance. Therefore, 
this research paves the way for finding a solution to mitigate the quick performance degradation of Li-ion 
batteries. 
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I. INTRODUCTION 

Batteries play an important role as energy storage in many 

applications, from power generation systems to mobile 

electronic systems [1]. With the recent development of electric 

vehicles (EVs), research in batteries has drawn enormous 

global attention and will be followed by an increase in battery 

demands by 2035 [2]. One of the battery types popular for EVs 

is Lithium-ion (Li-ion) battery, mainly because it can be 

charged quickly and relatively compact, thus suitable for use in 

systems with mobility. In other words, Li-ion battery has higher 

energy density than the other types. Although the physical size 

of Li-ion battery is smaller than other types of batteries, it can 

store the same amount of energy as other types of batteries, 

such as valve-regulated lead acid (VRLA) battery [3].  

In EVs and electronics, batteries used as energy sources and 

storage at once and thus frequently undergo charging and 

discharging cycles [4]. Charging and discharging are 

practically arbitrary processes, as batteries flow by different 

electric currents depending on the charger settings and load 

characteristics. As different type of battery has unique 

characteristics and applications, the charging and discharging 

cycles are critical to the battery's capacity and health. While a 

battery operates, it is important to understand its performance 

through its capacity and other parameters [5], [6]. Without 

knowing the battery capacity, we cannot estimate how far the 

electric vehicle can go. More severely, the battery could be 

damaged due to the user's incomprehension. One of parameter 

used to determine the battery capacity and the charge/discharge 

state is called the state of charge (SoC). SoC measures the 

remaining energy in a battery compared to the energy when the 

battery is fully charged [7].  

By understanding the SoC and its dynamics, the charge and 

discharge cycles of the battery can be monitored and planned 

so that it can be used more precisely [8]. Monitoring the SoC 

prevents unwanted issues that can damage the battery, such as 

over-charge, under-charge, or over-discharge. Several 

researchers have researched the SoC estimation of VRLA 

battery to study its performance [9], [10]. Evaluating battery 

performance through SoC and other parameters is necessary to 

understand the characteristics of battery. 

Performance degradation has been a vital issue in Li-ion 

batteries [11], [12]. Performance evaluation of Lithium-Sulfur 

(Li-S) battery on EVs was conducted using the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) [13]. The average 

error of SoC estimation was  4%, with a maximum error of 7% 

when the tested EV was running. The Peukert effect was 

studied to estimate the SoC of Li-ion battery by measuring 

temperature variable, even though the Peukert effect is usually 

used for VRLA battery. SoC estimation of Li-ion battery using 

the fuzzy logic method in Simulink was discussed [14]. 

Furthermore, SoC estimation of Li-ion battery with indirect 

measurements has also been reported [15]. In the other work, 

the effective discharge time decreases with the power rate 

increase when it is more than 100%. For example, when the 

power rate is over 100%, the effective discharge time is very 

close to the nominal discharging time. On the other hand, it can 

destroy the battery more [16]. Nevertheless, the performance 

evaluation of Li-ion battery with direct measurements while 

providing an in-depth analysis with several quantitative 

parameters is still lacking in the literature.  

In this work, the performance of a Li-ion battery is 

evaluated to reveal the performance degradation using three 

quantitative parameters, that is SoC, battery capacity, and 
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discharge time. The performance degradation is evaluated from 

multiple measurements, which are the measured voltage, 

current, and temperature are observed and recorded over five 

charge/discharge cycles. The contributions of this research are 

multifold. First, we demonstrate a simple, low-cost, effective 

setup to log and evaluate battery’s performance. Second, this 

work introduces three parameters to evaluate performance 

degradation: SoC, battery capacity, and discharging time [17]. 

Third, this research reveals the performance degradation of a 

generic Li-ion battery, which occurs after the first charging and 

discharging cycle [18]. 

II. METHOD 

A. Battery Performance Evaluation 

In modern battery-powered electrical systems, such as EVs, 

batteries are installed with a management system or additional 

circuitry that measures several battery parameters. Despite 

being an energy source and storage, batteries need a data 

acquisition system to evaluate the batteries performance. Figure 

1 illustrates the batteries performance evaluation in EVs to 

determine the SoC, which comprises the battery-powered 

system, data acquisition, and data analysis. The data acquisition 

collects several battery parameters, including the voltage (V), 

current (I), and timestep (t) for analysis. The data acquisition is 

accomplished through direct measurement, meaning the 

parameters are collected directly from the battery while used. 

The three measured quantities are necessary to determine the 

SoC, battery capacity, and discharging time. The data analysis 

process is required to derive the battery performance. For 

instance, the data of current and time is used to analyze the SoC 

through the Coulomb Counting method. Therefore, the last step 

is to analyze the performance degradation of a Li-ion battery 

with three parameters, such as SoC, battery capacity, and 

discharge time. 

 
Figure 1. Principle of battery performance evaluation 

One of the useful parameter to evaluate battery performance 

is SoC, which measures the remaining stored energy compared 

to it in fully charged condition. The SoC is estimated using the 

Coulomb Counting method while the battery capacity and 

discharge time are taken from multiple measurements and 

analysis. The performance parameters are compared, and the 

degradation is calculated and concluded. Determining the value 

of the SoC sometimes involves complex calculations 

depending on the battery type and the application. A simple yet 

accurate method widely used for estimating SoC in batteries is 

Coulomb Counting [19]. The advantages of this method are 

precision, ease of application, and accuracy. The possible error 

is only from the sensors. Moreover, the Coulomb Counting 

method can measure SoC while the battery is charging and 

discharging [20]. This method utilizes the value of the current 

consumption and total capacity of the battery. The Coulomb 

Counting method calculates the battery capacity value in Ah 

units, which later can be used to determine the SoC. 

Mathematically, The calculation of battery capacity using the 

Coulomb Counting method can be written as [21]: 

 𝐶𝑐 = ∑ 𝑖 𝑡𝑛
0   () 

where n is the amount of data taken, i is the current flowing to 

or from the battery, and t is the sampling time for data collection. 

The n depends on the data sampling and measurement period. 

The battery capacity can be determined by recording and 

updating n, i, and t over time. From the data, the Coulomb 

Counting method can accurately measure the battery capacity 

and SoC. After the battery capacity value is obtained using the 

Coulomb Counting method, the SoC value can be calculated 

using:  

 𝑆𝑜𝐶 =
𝐶0−𝐶𝑐

𝐶0
× 100%  () 

where C0 is the reference battery capacity value in Ah. The 

reference capacity value can be obtained from the battery 

datasheet. The parameter Cc is the battery capacity value 

calculated using Coulomb Counting according to the ratio of 

incoming and outgoing currents to the battery [22]. 

For the continuity of this research, the flowchart of this 

research is shown in Figure 2. The first step is to prepare an 

experimental setup for a direct measurement system. The 

experimental setup records and collects real-time data on the 

battery for repeated charging and discharging cycles. The 

collected data are voltage, current, and time used in the 

Coulomb Counting method to find the battery capacity changes 

over time. After recording the data, manual data selection and 

filtering are necessary to remove false data and outliers. Then, 

data processing through the Coulomb Counting method is 

applied to estimate SoC, battery capacity, and discharging time. 

The three parameters are used for analyzing the battery 

performance degradation. 

 
Figure 2. Research flowchart 

B. Experimental Setup 

In order to evaluate a battery's performance, the voltage and 

current can be acquired through direct measurement [23]. 

Figure 3 depicts the connection diagram of direct measurement 

to evaluate the performance of a Li-ion battery [24]. Several 

components used in the direct measurement include a Li-ion 

battery, a load, a microcontroller, i.e., Arduino Uno, a voltage 

sensor, a current sensor ACS-712, and a PC with data-logging 

software [25]. The current sensor is connected in series between 

the battery and load. The voltage sensor is connected in parallel 

to the battery. The outputs of the current and voltage sensors 

are connected to the microcontroller's analog-to-digital 

Data 

Processing 

Data 

Acquisition 

Direct 

Measurement 

Battery-

powered 

System 

V, I, t 

Coulomb 

Counting 
Electric 

Vehicle’s 

Battery 

Performance 

Degradation 

Analysis 

SoC, 

Battery 

capacity, 

Discharge

Time 

Start 

Setting up experiment for battery direct measurement 

Finish 

Recording data for multiple charge/discharge cycles 

Data selection and filtering 

Data processing through the CC method for SoC, 

battery capacity, and discharging time 

Performance degradation analysis 



Jurnal Teknik Elektro Vol. 14 No. 2 2022 54 

converter (ADC) pins. In direct measurement, the 

microcontroller is responsible for reading the measured current 

and voltage and sending it to the PC through USB serial 

connection. A data logging software, i.e., The Parallax Data 

Acquisition Tool (PLX-DAQ), will record the timestamp, 

measured current, and measured voltage periodically in real 

time. In this research, a light bulb is used as a load. Although 

batteries are used in various applications, including EVs, a 

stable light bulb load is preferred to examine the battery's ideal 

characteristics. In this research, the discharging process uses 

the standard "C20" with 0.5A. The issue with using dynamic or 

variable load is that the actual battery capacity would be 

affected by many unexpected factors which complicate the 

analysis. 

 
Figure 3. Connection diagram of direct measurement for battery performance 

evaluation 

The selection of sensors and other components considers 

their specifications. The selected current sensor, ACS712, has 

a high reading accuracy since it contains a low-offset linear 

Hall-effect circuit with a single track made of copper. The 

accuracy is optimized by virtue of components between the 

conductors that produce a magnetic field and the hall-effect 

transducer nearby. The electric current from the battery to the 

load flows through the copper wires. It produces a magnetic 

field captured by the integrated Hall-effect IC and converts it 

into a proportional voltage [26]. The specifications of the 

current sensors, ACS712, are detailed in Table I. 

The voltage sensor works based on the voltage divider 

circuit, which has an input range of 0-25V. Since the 

microcontroller Arduino Uno can only receive a maximum DC 

voltage of 5V, the voltage sensor increases the range of the 

voltage reading. With the voltage divider, the sensor reads a 

large voltage up to 25V and reduces it to 5 times smaller voltage, 

no greater than 5V, which is compatible with the 

microcontroller. The specifications of the voltage sensor are 

shown in Table II. The two sensors and microcontroller send 

the data to the PC via the PLX-DAQ data logging software. The 

data are received and recorded in  Ms. Excel file. PLX-DAQ 

software add-in for Ms. Excel can acquire up to 26 channels of 

data and arranges the arriving numbers into columns. PLX-

DAQ provides a simple spreadsheet analysis of data collected 

in the field, lab analysis of sensors, and real-time device 

monitoring [27]. 

TABLE I.   CURRENT SENSOR ACS712 SPECIFICATIONS 

No. Specification Value 

1 Supply voltage 8 V 

2 Reverse supply voltage  -0.1 V 

3 Output voltage 8 V 

4 Reverse output voltage -0.1 V 

5 Output current source 3 A 

6 Output Current Sink 10 A 

7 Ambient Temperature -40 to 85 0C 

8 Maximum Temperature 165 0C 

9 Storage Temperature -65 to 170 0C 

TABLE II.   VOLTAGE SENSOR SPECIFICATIONS 

No Specification Value 

1 Input voltage 0 – 25 VDC 

2 Detection voltage 0.02445 – 25 VDC 

3 Measurement accuracy 0.00489 V 

4 Size 25 x 13 mm 

Figure 4 shows the experimental setup for the performance 

evaluation of a Li-ion battery. The experiment was conducted 

in a laboratory environment with the setup following the 

connection diagram in Figure 3. A Li-ion battery with the 

capacity of 10Ah is used as a sample and tested with a direct 

measurement method. The Li-ion battery used in this study is 

assembled from 18650 batteries installed in series and parallel 

with a total capacity of approximately 10Ah. The detailed 

specification of the Li-ion battery under test is listed in Table 

III. The battery has a minimum voltage of 9 V and a maximum 

voltage of 12.6 V. The battery is connected to the load, which 

is a DC light bulb 6W, to perform the discharging process. In 

order to perform one cycle of the experiment, the battery is 

charged using a battery charger and discharged [27]. 

 

Figure 4. Experimental setup for performance evaluation of a Li-ion battery 

TABLE III.   BATTERY SPECIFICATIONS 

No. Specification Value 

1 Battery type Lithium – ion 

2 Configuration 3s4p (BMS3s40A) 

3 Nominal voltage 11.1 V 

4 Maximum voltage 12.6 V 

5 Minimum voltage 9 V 

6 Maximum charge current 20 A 

7 Maximum discharge current 40 A 

8 Discharge continuous current 20 A 

9 Charger voltage 12,6 V 

10 Nominal capacity Approximately 10 Ah 
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Concerning the Coulomb Counting method, the direct 

measurement collects the data on how much electric current is 

used during the discharging process. The discharging process 

uses "C20", which refers to the data collection for 20 hours, 

where the number "20" in the word "C20" means time in hours. 

There are also C1, C5, C10, and C20 with different purposes 

and objectives. The C20 method is used because it has been 

proved by the researchers as the ideal time to prove the battery's 

capacity under test. In addition, the C20 method is also the ideal 

method of determining the actual or close to the original SoC 

value [28]. After calculating the battery capacity value using 

Coulomb Counting formula (1), it is converted into a 

percentage form using the formula (2) to estimate the SoC value. 

Since the battery capacity is 10Ah and the measurement uses 

C20, the load current that should be used is calculated as: 

 𝐼 =
𝐶

𝑡
 () 

where C is the capacity of the Li-ion battery, and t is the time of 
the data collection using the C20 method, which is 20 hours. I is 
the load current used in this study. 

From the calculation using formula(3), the ideal electric 

current for C20 and the used battery is 0.5A. Therefore, a DC 

incandescent light bulb with a power specification of 6W is 

used [29]. After that, direct data collection is carried out to 

measure the voltage and current values in real-time. In order to 

evaluate the performance of a Li-ion battery, multiple 

measurements were conducted. The number of measurement 

cycles was five times. Each measurement cycle took 

approximately 16 hours with the C20 data collection method. 

The temperature when data were collected is around 25⁰C (a 

normal room temperature), which is very important in the data 

collection process, especially on the battery [30]. 

III. RESULTS AND DISCUSSION  

The experiment was conducted five times, meaning the data 

of battery parameters, i.e., current and voltage were measured 

for five charging and discharging cycles with around 20 hours 

for each cycle. The SoC value was calculated from the 

discharge current and sampling time in each experiment. The 

calculation uses formula (1) to find 𝐶𝑐 , which was then 

compared to 𝐶0 obtained from the battery specification as in 

formula (2) to estimate the SoC value. The experimental results 

of the calculated SoC against the measured voltage from five 

measurements are depicted in Figure 5. The graph shown in 

Figure 5 is the results of the discharging processes, in which the 

SoC goes from 100% to the lower states. Thus, the graphs 

should be seen from right to left. The initial voltage is around 

12.6V, while the final voltage after discharge is 9.38V. During 

the data recording, the measured parameters, i.e., voltage and 

current, from sensors are compared with the ones using a 

multimeter. The sensors have been calibrated so that the sensors 

reading is the same as the multimeter reading. The initial and 

final voltages are similar for all experiments. However, the SoC 

values are different for five experiments. The SoC reduces 

significantly after the first experiment. It implies that the 

battery experiences capacity fading, as shown in the grey box 

in Figure 5. 

The SoC value in experiment 1 changes from 100% to 11%, 

while experiments 2, 3, 4, and 5 have a similar SoC value range, 

which changes from 100% to roughly 18%. The data shown in 

Figure 5 is plotted from a very large dataset containing 12,000 

data for one cycle with a total of 5 data measurement cycles. 

For further explanation, it is important to look into the grey box 

to analyze the battery's performance. The grey box in Figure 5 

shows the gap between the first experiment with the second and 

so on. The results of zooming in, the value into the grey box, 

and the critical area in the graph are given in Figure 6 and 

Figure 7. The total data in Figure 6 and Figure 7 are more than 

1500, where the data are  taken from the lowest value. In Figure 

5, the data are taken from row 1238, while the data are taken 

from row 1262 in Figure 6.  

 

Figure 5. Comparison of SoC and voltage from multiple measurements 

 
Figure 6. Detailed data of SoC against voltage showing the stepwise 

degradation of SoC 

 
Figure 7. Battery capacity drops in five measurement cycles 

The SoC of the Li-ion battery under test can be seen more 

clearly in Figure 6 and Figure 7. As seen in Figure 5, the SoC 

values are at the same level, i.e., 13%, while the voltages are at 

different values, i.e., 9.62V at the 1238th data and 9.55V at the 

1262nd data. This proves that the SoC has a fixed value, but the 
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voltage decreases because the battery is in its discharge phase. 

This phenomenon also makes the graphs in Figure 6 and Figure 

7 show spikes for different voltages. It is good for the battery, 

which indicates that the battery is in a healthy state. When the 

graph is sloping without spikes, the SoC value changes faster 

to the next level. However, this is inversely proportional to the 

SoC value for each experiment. It can be seen again in Figure 

5, Figure 6, and Figure 7 that the first experiment (black line) 

experienced a significant change in the second, third, and so on. 

Therefore, after the first experiment, the SoC will decrease 

significantly. A decrease in capacity is a change in the 

minimum SoC values from 11% to 18%. It implies that the 

battery experienced a capacity reduction of 7%. Therefore, 

other variables are needed to prove that performance 

degradation has occurred in Li-ion battery besides the SoC 

degradation. The other phenomena that can be observed for 

evaluating the performance degradation are the battery capacity 

and discharge time [31]. 

The capacity fading indicates a degradation of battery 

performance related to the battery life. Figure 7 shows the 

changes in battery capacity taken from five measurements 

denoted with the black rectangular markers. It can be seen that 

the battery capacity drops significantly after the first 

experiment. The battery capacity decreases from roughly 8.8Ah 

to 8.15Ah, which is about 8%. Then, the battery capacity 

fluctuates in experiments 3, 4, and 5, yet has a declining trend 

of around 1%. Therefore, a capacity fade occurred due to the 

battery's repeated use. Another factor causing a decrease in 

battery capacity is an increase in the battery's internal resistance 

or the thickening of the resistance in the battery. Hence, the 

decrease in battery capacity indicates the performance 

degradation in the Li-ion battery under test. For comparison, a 

research [32] also reveals the Li-ion battery capacity 

degradation proved by a similar result as in Figure 7. 

The performance degradation also applies to a decrease in 

battery usage based on the battery discharge time [33]. It can 

be seen in Figure 8 that the pattern of decline is the same as in 

Figure 7. This shows that battery capacity and discharge time 

are interrelated variables and cannot be separated. The result of 

this pattern is when the battery capacity decreases, the 

discharge time will also decrease. After experiment 1, the 

discharge time was significantly reduced from 16.9 hours to 

16.3 hours. The significant decrease was proven to represent 

the decrease in the discharge time after experiment 1. For the 

next experiments, the degradation happens slowly. Therefore, 

with the electric current that has been determined using 

properties  of constant current, the ideal temperature for data 

collection, and the accuracy of the sensor that takes data, it can 

be concluded that there is a decrease in the SoC, capacity, and 

discharging time of the battery. 

TABLE IV.   COMPARISON WITH OTHER RELEVANT WORKS ON BATTERY PERFORMANCE DEGRADATION 

Ref. 

No. 
Battery type 

Simulation/measurement 

tool 
Analyzed parameters Results 

[31] Lithium-ion Equivalent electric circuit 

models (EECM) 

Charging time, 

temperature, charging 

cost 

Battery capacity degradation is affected by 

charging cost, temperature, and charging 

time. 

[32] Lithium-ion NEWARE  BTS 4000 

battery tester  

Battery capacity The battery capacity estimation show the 

capacity degradation over 900 charging and 

discharging cycles 

[33] lithium-ion 

battery with Li 

(NiMn Co) 

O2 cathode 

Multi-channel 5V-100A 

Arbin battery tester 

Battery capacity, 

impedance 

Charge and discharge cycling under 0–20% 

causes more impedance increase and less 

capacity loss, cycling under 80%–100% 

cause more capacity loss. 

[34] Lithium-ion Battery testing machine (not 

specified) 

SoC The average estimation error using a neural 

network under three conditions is less than 

3%. The capacity degrades with the number 

of discharges. 

[35] Lithium-ion ab initio calculations, 

kinetic Monte Carlo 

simulations, software BEST 

Battery capacity Battery performance degradation can be 

estimated using mechanical and chemical 

models, which can fit experimental datasets. 

[36] Lithium-ion MATLAB 

2019b 

Battery capacity Anodic failure through the mechano-

chemical model causes battery performance 

degradation shown by the capacity fade. 

[37] Lithium-ion BTS200-100-10-4 battery 

testing system, thermostat 

(DGBELL), MATLAB 

Battery capacity The improved data-driven Coulomb 

Counting algorithm can accurately estimate 

SoC with less than a 3.6% error. 

[38] Lithium-ion NEWARE, BTS-4000 Charging/discharging 

capacity, temperature, 

resistance, depth of 

discharge (DOD) 

The battery charging characteristics are 

nearly independent of the charging 

temperature ranging from 20 °C to 40 °C, 

while the battery charging/discharging 

performance degrades dramatically for the 

battery temperature lower than 20 °C. 

[39] LiFePO4 / 

graphite lithium-

ion 

Scanning electron 

microscopy (SEM) 

Discharge capacity, 

impedance, cycling cell 

Degradation of the LFP/graphite LIBs could 

progress with an increasing C-rate; however, 

higher C-rates could mitigate the 

degradation because of the lowered capacity 

utilization. 

This 

work 

Lithium-ion Voltage sensors, current 

sensors, and Arduino 

microcontroller, PC with 

PLX-DAQ software 

SoC, battery capacity, 

discharge time 

The battery SoC, capacity, and discharge 

time degrade of about 7% after the first 

cycle. 
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Figure 8. Discharging time (hours) drops in five measurement cycles 

After analyzing the SoC, battery capacity, and discharge 

time, it can be concluded that these three measurements are 

very influential in determining the evaluation of the 

performance degradation of Li-ion battery. The degradation 

that occurs is an average of 7% - 9% for each variable after the 

first experiment. For the sake of comparison, other relevant 

works on battery performance degradation are summarized in 

Table IV based on the battery type, method (simulation or 

measurement), the analyzed parameters, and the results  [34]–

[36]. In the battery type, most researchers characterize Li-ion 

battery. Many of them create battery models and use 

simulations to study the performance degradation of battery. 

The other research based on experiments is conducted using 

costly battery testing and measurement system [37]–[39]. In 

our work, the measurements are done using a low-cost system 

employing off-the-shelf sensors, a microcontroller, and open-

source data-logging software. Most research works analyzed 

battery capacity to observe battery performance degradation. In 

our work, three parameters are derived: SoC, battery capacity, 

and discharge time. In general, all relevant works agree well 

that Li-ion battery experience performance degradation. The 

performance degradation of Li-ion battery is proved in 

simulation and experimental works with mechanical and 

chemical models, as well as proved with direct measurements. 

Future research is expected to pay more attention to the battery 

monitored by using a Battery Management System (BMS), 

which can regulate excess voltage, current, and temperature to 

reduce this performance degradation.  

IV. CONCLUSION 

This research has evaluated the performance of a 10Ah Li-

ion battery from multiple measurements of the SoC, battery 

capacity, and discharging time. The three parameters are 

derived from the direct measurements of voltage, current, and 

time. The measurements were conducted using a low-cost 

system employing off-the-shelf sensors, a microcontroller, and 

the PLX-DAQ data logging software. Results obtained from 

this study show that the Li-ion battery experienced a significant 

performance degradation denoted by the increase of minimum 

SoC value, battery capacity, and discharge time from the first 

experiment to the next. The change of minimum SoC from 11% 

to 18% indicates a capacity reduction of 7%. The discharge 

time is also reduced by 7% with the reduced battery capacity. 

The decrease in SoC value is related to the reduction of battery 

capacity and usage time. All the evaluated parameters from the 

Li-ion battery are related to each other. For the future, the 

results of this study can be used as a reference for research 

related to battery life and it is expected to pay more attention 

for the new battery, which should be monitored by a BMS to 

mitigate performance degradation. 
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