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Abstract— Sequential analysis has been used in many cases when the decision is required to be made quickly, 

such as for signal detection in statistical signal processing, namely sequential detector. For identical error 
probabilities, a sequential detector needs a smaller average sample number (ASN) than its counterpart of a 
fixed sample number quadrature detector based on Neyman-Pearson criteria. The optimum sequential detector 
was derived based on the assumption that the observations are uncorrelated (independent). However, the 
assumption is commonly violated in realistic scenario, such as in radar. Using a sequential detector under 
correlated observations is sub-optimal and it poses a problem. It demands a high computational complexity 
since it needs to recalculate the inverse and the determinant of the signal covariance matrix for each new 
sample taken. This paper presents a technique for reducing computational complexity, which involves using 
recursive matrix inverse to calculate conditional probability density functions (pdf). This eliminates the need 
to recalculate the inverse and determinant, leading to a more reasonable solution in real-world scenarios. We 
evaluate the performance of the proposed (recursive) sequential detector using Monte-Carlo simulations and 
we use the conventional and non-recursive sequential detectors for comparisons. The results show that the 
recursive sequential detector has equal probabilities of false alarm and miss-detection with the conventional 

sequential detector and performs better than the non-recursive sequential detector. In terms of ASN, it 
maintains results comparable to those of the two conventional detectors. The recursive approach has reduced 

the computational complexity for matrix multiplication to  𝓞(𝐧𝟐) from 𝓞(𝐧𝟑) and has rendered the calculation 
of matrix determinants unnecessary. Therefore, by having a better probability of error and reduced 
computational complexities under correlated observations, the proposed recursive sequential detector may 
become a viable alternative to obtain a more agile detection system as required in future applications, such 
as radar and cognitive radio.    
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I. INTRODUCTION 

The introduction of sequential analysis as an alternative 

method in hypothesis testing by Abraham Wald in 1945 [1] has 

drawn the attention from many researchers to extend it to the 

fields that need fast decision making (small average sample 

numbers). One of the frequently used sequential analyses for 

hypothesis testing is the Sequential Probability Ratio Test 

(SPRT) [1], which was proven to be optimum in terms of the 

average sample number (ASN) compared to other possible 

sequential schemes. Since then, SPRT has not only been of 

interest to statisticians but also to researchers in engineering. In 

statistical signal processing, signal detection based on SPRT, 

or sequential detector, has been intensively researched and 

developed. The first classic reference to sequential detector can 

be found in [2], which is then followed by some classical works 

to solve the problem of possibly having huge sample numbers 

[3], [4] and to derive its asymptotic efficiency [5], [6]. Recently, 

sequential detectors have been applied not only using a single 

sensor node but using many in a centralized or decentralized 

distributed manner [7]-[9], to improve performance. This 

happens along with the widespread use of wireless sensor 

networks to detect physical phenomena in a geographical area 

[10]. A tutorial on sequential detection that discusses classical 

theoretical results and recent developments emphasizing 

Quickest Change Detection can be found in [11] and the 

references therein.  

In contrast to the Neyman-Pearson detector, which only has 

one threshold [12], a sequential detector introduces two 

thresholds at the detector output so that the signal is reported 

present if one is exceeded and absent if the other is exceeded. 

The length of the detection process (sample number) is not 

predetermined but rather a random variable that varies with the 

course of the test. For the same target error probability, a 

sequential detector has the advantage of having a smaller ASN 

than its counterpart Neyman-Pearson detector with a fixed 

sample number. Consequently, a sequential detector is more 

agile than a Neyman-Pearson detector. Due to its agility, the 

sequential detector is later considered as an appropriate solution 

for target detection in radar [13] and for spectrum sensing in 

cognitive radio [14].  

Some issues on optimal quantization for sequential 

detectors have been addressed in [15]. Sequential detectors can 

also be used to detect the presence of anomalies in networks 

with parallel data streams or multiple data sources, including 

when sampling constraints exists [16], [17], both 
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parametrically [18] and non-parametrically [19]. 

Implementations of sequential detectors could also be found in 

multisensory integrated systems [20] and the Internet of Things 

(IoT) [21]. 

Sequential analysis has been broadly used not only in 

electrical engineering but also in materials engineering [22], 

nuclear engineering [23], and reliability testing [24]. In 

medicine, sequential analysis is applied for clinical trials to find 

the best treatment for Covid-19 patients [25]. It has been used 

in environmental issues to detect changes in carbon dioxide 

emission levels [26].  Two sequential methods, SPRT and 

Sequential Bayes Factor Test (SBFT), are recommended in 

psychological research [27]. Even in politics, sequential 

analysis has been used, e.g., to generate evidence in 

determining the level of decline in trust in the government [28]. 

A critical issue to be addressed in signal detection using a 

sequential detector is the degree of correlation between 

observations (correlated or uncorrelated) [7] since it might 

significantly affect the performance if not carefully examined. 

The optimum sequential detector was derived, assuming that 

the observations are uncorrelated (independent). However, the 

assumption is frequently not met in practice, as seen in radar 

and cognitive radio. Using a sequential detector under 

correlated observations presents an issue with computational 

complexity [29]. In the detection process, a sequential detector 

recalculates the inverse and determinant of the signal 

covariance matrix each time a new sample is received. The 

computational complexity increases since each calculation 

must be delivered as the size of the signal covariance matrix 

expands to accommodate the new sample. Therefore, this 

complexity should be addressed rigorously.   

Unlike most of the literature cited above, this paper aims to 

reduce the computational complexity of a sequential detector 

under correlated observations, making it more feasible in 

practice. The method proposed in this paper proves that 

recursively calculating the matrix inverse and matrix 

determinant can reduce the computational complexity without 

affecting the performance of the error probability and the 

average sample number (remaining the same as the 

conventional sequential detector). By doing so, an agile 

detection system is more viable, as required in radar and 

cognitive radio. To the best of our knowledge, this is rarely 

discussed in the literature. Thus, the contributions of the paper 

are:  

• A recursive implementation of sequential detection has 

been successfully derived, whereas the previous 

literature mostly discusses non-recursive methods. 

• An alternative agile sequential detector with less 

computational complexity can be obtained, under 

correlated observations, making it more feasible for use 

in a in real scenario. 

To make the paper easy to follow, next, it is organized into 

4 sections. The signal model is presented in Section II. It also 

discusses two conventional approaches for signal detection 

when the observations are correlated, namely the quadrature 

detector and the conventional sequential detector, followed by 

the proposed method of recursive sequential detector. Section 

II ends with the simulation scenario. The simulation results and 

computational complexities of recursive, non-recursive, and 

conventional sequential detectors are discussed in Section III. 

Concluding remarks can be found in section IV. 

 

 

 

II. METHOD  

In this section, we begin with a brief description of the 

signal model, with the aim of contextualizing signal detection 

as a binary hypothesis testing problem, i.e. signal absent versus 

signal present. This is followed by a description of two 

conventional detectors for binary hypothesis testing problems, 

namely the Neyman-Pearson-based detector with a fixed 

sample number (quadrature detector) and the conventional 

sequential detector with random samples.  This section closes 

with the formulation of the proposed solution, the recursive 

sequential detector, which minimizes the sequential detector's 

computational complexity while dealing with correlated 

observations. We use simulation to evaluate the performance of 

the proposed method and compare it to the conventional 

methods. The performance metrics that we use are probability 

of false alarm, probability of miss detection and average sample 

number. 

A. Signal Model and Conventional Approaches 

Suppose that a receiver using a sequential detector observes 

a sequence of random signal samples 𝑥1, 𝑥2, . .. up to the nth 

sample, and be represented by a signal vector 𝐱𝑛. The problem 

of signal detection can be formalized as a binary hypothesis 

testing  between the null hypothesis (ℋ0) representing that the 

signal is absent (noise only) and the alternative hypothesis (ℋ1) 

representing that the signal is present (signal plus noise) [12], 

ℋ0  ∶  𝐱𝑛 = 𝐰𝑛  
ℋ1  ∶  𝐱𝑛 = 𝐫𝑛 +𝐰𝑛 , n = 1,2, ….   

() 

Here,  𝐫n ∈ ℂ
n  is an 𝑛 dimensional signal vector having 

correlated complex Gaussian distribution with zero mean and 

covariance matrix 𝐑𝑟𝑛 = 𝐸[𝐫𝑛𝐫𝑛
𝐻] . (∙)𝐻  and  𝐸[∙]  denote 

Hermitian transpose and expectation, respectively. 𝐰𝑛 

represents a noise vector having identically independent 

distributed (i.i.d) Gaussian with covariance matrix 𝐑𝑤𝑛 = 𝜎
2𝐈 

with 𝐈 represents identity matrix.  Thus, (1) can be rewritten as 

ℋ0  ∶  𝐱𝑛~𝒞𝒩(𝟎, 𝜎
2𝐈) 

ℋ1  ∶  𝐱𝑛 ~𝒞𝒩(𝟎, 𝐑𝑛 + 𝜎
2𝐈). 

() 

Here~𝒞𝒩(𝝁, 𝐑)  denotes distributed according to Gaussian 

complex with mean vector 𝝁  and covariance matrix 𝐑.  The 

covariance matrix 𝐑𝑛 = 𝐑𝑟𝑛 + 𝜎
2𝐈 is Hermitian and Toeplitz 

for each n, and the signal is assumed to be stationer. 

Two conventional approaches in signal detection under 

correlated observations are quadrature detector based on the 

Neyman-Pearson criterion with a fixed sample number and 

sequential detector with random sample numbers. A brief 

description of both detectors will be provided in the next sub-

sections to gain a thorough understanding of the problem being 

addressed in this paper. In addition, these two detectors will 

serve as references to compare to when we evaluate the 

performance of the proposed sequential detector. 

1) The Quadrature Detector 

The quadrature detector is derived based on the Neyman-

Pearson criterion, which is to maximize the probability of 

detection 𝑃𝑑 with the pre-specified probability of false alarm 𝑃𝑓. 

This approach leads to the Likelihood Ratio Test (LRT) with a 

fixed sample number [12]. Suppose that 𝑁  is the sample 

number, the joint probability density function of the vector 𝐱𝑁 

under  ℋ0 can be written as 

p0(𝐱𝑁) =
1

𝜋𝑁𝜎2𝑁
exp (−

1

𝜎2
𝐱𝑁
𝐻𝐱𝑁), () 
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and under ℋ1 as 

p1(𝐱𝑁) =
1

𝜋𝑁det(𝐑𝑁)
exp (−

1

𝜎2
𝐱𝑁
𝐻𝐑𝑁

−1𝐱𝑁). () 

Where (∙)−1  and det(∙)  denote matrix inverse and matrix 

determinant, respectively. Using (3) and (4), the LRT (ℒ𝑁)  is 

ℒ𝑁 =
p1(𝐱𝑁)

p0(𝐱𝑁)
 

ℋ1 = 
𝜎2𝑁

det(𝐑𝑁)
exp (−𝐱𝑁

𝐻 [𝐑𝑁
−1 −

𝐈

𝜎2
] 𝐱𝑁). 

() 

After some manipulations, the quadrature detector 𝑄𝑁  can be 

expressed by [12], 

𝑄𝑁 =

𝐱𝑁
𝐻[𝐑𝑟𝑁𝐑𝑁

−1]𝐱𝑁 {
≥ 𝜏, accept ℋ1 (signal present)
< 𝜏, accept ℋ0  (signal absent)  

,  
() 

where 𝜏 is the pre-specified threshold based on the target 𝑃𝑓. 

2) The Conventional Sequential Detector 

The second approach is a conventional sequential detector 

based on SPRT [1]. The advantage of SPRT is that the two error 

probabilities, the probability of miss detection  𝑃𝑚  and the 

probability of false alarm 𝑃𝑓 , can be kept constant at a certain 

level following the requirement. However, this results in 

random sample numbers.  

Unlike the quadrature detector, the SPRT uses two constants 

for the thresholds, i.e., an upper threshold 𝐴 to control 𝑃𝑓  dan a 

lower threshold 𝐵  to control 𝑃𝑚.  The detector will stop 

sampling and then decide if either threshold 𝐴 or 𝐵 is crossed 

for the first time. Otherwise, the detector will continue to take 

a new sample ( 𝑛 ←  𝑛 + 1 ). The stopping time 𝑁𝑠  of a 

sequential detector can be defined as 

𝑁𝑠 = min
𝑛≥1
{𝑛: ℒ𝑛  (𝐵, 𝐴)}, () 

where ℒ𝑛 is the LRT until the 𝑛th sample. The test will decide 

ℋ1(signal is present) if ℒ𝑁𝑠 ≥ 𝐴, and ℋ0 (signal is absent) if 

ℒ𝑁𝑠 < 𝐴. Thus, the sequential detector reads as follow, 

ℒ𝑛 =
p1(𝐱𝑛)

p0(𝐱𝑛)
 

{

≥ 𝐴,                                                               accept  ℋ1
< 𝐵,                                                                accept  ℋ0

𝐴 <  ℒ𝑛 < 𝐵, 𝑛 ←  𝑛 + 1 (take a new sample).
 

() 

The two thresholds 𝐴  and 𝐵  can be found using Wald’s 

approximation [1], i.e.,  

𝐴 =
1 − 𝛽

𝛼
, dan     𝐵 =  

𝛽

1 − 𝛼
  () 

where 𝛼 is the nominal probability of false alarm and 𝛽 is the 

nominal probability of miss detection. 

If 𝑃𝑓 and 𝑃𝑚 represent the actual probabilities of false alarm 

dan miss-detection, respectively, the following two inequalities 

are guaranteed [2], 

𝑃𝑓 ≤
𝛼

1 − 𝛽
, and     𝑃𝑚 ≤  

𝛽

1 − 𝛼
 . () 

Nominal 𝛼  and 𝛽  will be determined by requirement and 

usually pre-specified to be very small, so as to have 

𝑃𝑓~𝛼 (1 − 𝛽)⁄  and 𝑃𝑚~𝛽 (1 − 𝛼)⁄ . Thus, the probability of 

having the actual  𝑃𝑓 larger than the nominal 𝛼 and having the 

actual 𝑃𝑚 larger than the nominal 𝛽 will be very small and can 

be neglected in the application. 

For the detection model (2) and the LRT (5), after using 

logarithmic function, the test statistic for the conventional 

sequential detector (8) becomes, 

𝑆𝑛 =  𝐱𝑛
𝐻 [
𝐑𝑟𝑛𝐑𝑛

−1

𝜎2
] 𝐱𝑛 + [𝑛 log (𝜎

2) − log det(𝐑𝑛)] 

           {

≥ log(𝐴),                             accept  ℋ1
< log(𝐵),                             accept ℋ0
log(𝐴) <  𝑆𝑛 < log(𝐵),   𝑛 ←  𝑛 + 1.

 

() 

Now, the conventional sequential detector based on the SPRT 

has been completely defined.  

In sequential detector, the sample number is random 

depending on statistics of the received signal. The higher the 

sample number, the larger the signal covariance matrix. This 

will create problems when calculating the inverse and 

determinant of the covariance matrix 𝐑𝑛  in (11). For example, 

when the Signal to Noise Ratio (SNR) is small, the detector 

needs a very large sample number 𝑛 (or large stopping time 𝑁𝑠) 
because it needs more information to distinguish between two 

similar states, i.e., a state of no signal (noise only) and another 

state of signal drowned in noise due to small SNR. Thus, in this 

case, the covariance matrix 𝐑𝑛  continues to grow very large 

and so the computational complexity for recalculating its 

inverse and determinant becoming very high as the sample 

number 𝑛  increases. This is not the case for the quadrature 

detector with the fixed sample number, since the inverse and 

determinant only need to be calculated once to decide. 

Up to this point, it has been demonstrated that using 

sequential detectors under correlated observations will result in 

significant computational complexity. In the following part, we 

will describe how to solve this complexity by using recursive 

matrix inversion, which is then used to construct the probability 

density function under the alternative hypothesis (ℋ1). 

B. Recursive Sequential Detector (Proposed Method) 

A solution for the implementation of sequential detector 

under correlated observation could be to calculate the inverse 

and determinant of matrix 𝐑𝑛  in advance and store it in a 

memory. However, there are three reasons why this is not the 

case. First, this study assumes that truncation such as in [30], 

[31] is not conducted, so the maximum sample number 

max(𝑁𝑠)  is not known in advance. Secondly, the amount of 

memory space 𝑀 to store the inverse matrices will depend on 

the random max(𝑁𝑠) . Thus, even in a perfect scenario, the 

required storage can easily exceed the memory size provided 

by small devices, such as sensor nodes or hand-held devices. 

Thirdly, the main target of this method is blind detection with 

unknown parameters (the covariance matrix in this case), so the 

matrix calculation must be delivered real time with the smallest 

possible computational complexity. Thus, to derive an efficient 

method for implementing sequential detector under correlated 

observation is necessary. 

One way to solve the computational complexity of 

sequential detector under correlated observations is to 

approximate 𝐑𝑛 in (11) by its corresponding circular matrix 𝐂𝑛. 

This method has been proposed in [29], namely non-recursive 

sequential detector. This method will also serve as a reference 

to evaluate the proposed sequential method (see Results and 

Discussion). Instead of using approximation, the proposed 

method is primarily based on facilitating the calculation of the 

inverse of the current covariance matrix 𝐑𝑛
−1  based on the 

knowledge of the inverse of the previous covariance 
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matrix𝐑𝑛−1
−1  (recursively). Therefore, from this point forward, 

the method will be refered to as recursive sequential detector. 

As the first step, (5) will be extended using the chain rule of 

probability. So, the LRT can be expressed as conditional 

probabilities,  

ℒ𝑛 =
p1(𝐱𝑛)

p0(𝐱𝑛)
=∏

𝑝1(𝑥𝑖|𝐱𝑖−1)

𝑝0(𝑥𝑖|𝐱𝑖−1)

𝑛

𝑖=1

 

ℋ1 = 
𝑝1(𝑥𝑛|𝐱𝑛−1)

𝑝0(𝑥𝑛|𝐱𝑛−1)
∏

𝑝1(𝑥𝑖|𝐱𝑖−1)

𝑝0(𝑥𝑖|𝐱𝑖−1)

𝑛−1

𝑖=1

. 

() 

The log-likelihood ratio 𝑆𝑛 becomes 

𝑆𝑛 =∑𝑧𝑖 = 𝑆𝑛−1 + 𝑧𝑛

𝑛

𝑖=1

 

𝑧𝑛 = log ( 
𝑝1(𝑥𝑛|𝐱𝑛−1)

𝑝0(𝑥𝑛|𝐱𝑛−1)
), 

() 

where 𝑧𝑛  is an increment of the log-likelihood ratio for each 

sample. The conditional probability density function under ℋ0 

can be written as 

𝑝0(𝑥𝑛|𝐱𝑛−1) = 𝑝0(𝑥𝑛) =
1

𝜋𝜎2
exp (−

|𝑥𝑛|
2

𝜎2
),   () 

and under ℋ1 

𝑝1(𝑥𝑛|𝐱𝑛−1) =
𝑝1(𝐱𝑛)

𝑝1(𝐱𝑛−1)
 

ℋ1                   =
1

𝜋

det(𝐑𝑛−1)

det(𝐑𝑛)
 

                       × exp (−𝐱𝑛
𝐻 ( 𝐑𝑛

−1 − [ 𝐑𝑛−1
−1 𝟎
𝟎 0

]) 𝐱𝑛). 

 

() 

Since 𝐑𝑛 is Hermitian, it can be rewritten as 

𝐑𝑛 = [
𝐑𝑛−1 𝐫𝑛
𝐫𝑛
𝐻 𝑟0

],  () 

where 𝐫𝑛 = [𝑟−𝑛+1  𝑟−𝑛+2   ⋯  𝑟1 ]
𝑇  and [∙]𝑇  is matrix 

transpose. Using partitioned matrix inversion lemma [32], we 

obtain recursive relation between 𝐑𝑛
−1 and 𝐑𝑛−1

−1 , i.e., 

𝐑𝑛
−1 = [

 𝐑𝑛−1
−1 +

1

𝑘𝑛
 𝐑𝑛−1
−1 𝐫𝑛𝐫𝑛

𝐻 𝐑𝑛−1
−1 −

1

𝑘𝑛
𝐑𝑛−1
−1 𝐫𝑛

−
1

𝑘𝑛
𝐫𝑛
𝐻 𝐑𝑛−1

−1 1

𝑘𝑛

], () 

where  

𝑘𝑛 =
det (𝐑𝑛)

det(𝐑𝑛−1)
= 𝑟0 − 𝐫𝑛

𝐻 𝐑𝑛−1
−1 𝐫𝑛 . () 

Using (18), the calculation of matrix determinant can be 

delivered recursively,  

det (𝐑𝑛) = 𝑘𝑛 × det(𝐑𝑛−1).  () 

Substituting (17) and (18) to (15), then we have 

𝑝1(𝑥𝑛|𝐱𝑛−1)

=
1

𝜋𝑘𝑛
exp (−

1

𝑘𝑛
[𝐱𝑛−1
𝐻  𝑥𝑛] 𝐑𝑛|𝑛−1

−1 [
𝐱𝑛−1
𝑥𝑛
]), 

     () 

with 

𝐑𝑛|𝑛−1
−1 = [

 𝐑𝑛−1
−1 𝐫𝑛𝐫𝑛

𝐻 𝐑𝑛−1
−1 −𝐑𝑛−1

−1 𝐫𝑛
−𝐫𝑛

𝐻 𝐑𝑛−1
−1 1

]. () 

 

 

Furthermore, (20) can be written in a simpler form, i.e., 

𝑝1(𝑥𝑛|𝐱𝑛−1)

=
1

𝜋𝑘𝑛
exp (−

(𝑥𝑛 − 𝜇𝑛)
𝐻(𝑥𝑛 − 𝜇𝑛)

𝑘𝑛
), 

      () 

where 

𝜇𝑛 = 𝐫𝑛
𝐻 𝐑𝑛−1

−1 𝐱𝑛−1, () 

and 𝑘𝑛 can be obtained from (18). Equation (22) signifies that 

the conditional distribution of 𝑥𝑛  under ℋ1  is complex 

Gaussian with mean 𝜇𝑛  and variance 𝑘𝑛. In this case, 𝑥𝑛  is a 

new sample and 𝜇𝑛  is deterministic since 𝐱𝑛−1  is previously 

known. Each update in this scheme can be considered as to 

decide whether (𝒙𝒏|𝐱𝑛−1) ~ 𝒞𝒩(𝜇𝑛, 𝑘𝑛)  or 

(𝒙𝒏|𝐱𝑛−1) ~ 𝒞𝒩(0, 𝜎
2). Thus, substituting  (22) and (14) into 

(13), we can obtain the increment of the log-likelihood ratio,  

𝑧𝑛 = log (
𝜎2

𝑘𝑛
) − (

|𝑥𝑛 − 𝜇𝑛|
2

𝑘𝑛
−
|𝑥𝑛|

2

𝜎2
).     () 

The log-likelihood ratio in (13) is then updated with 𝑆𝑛 =
𝑆𝑛−1 + 𝑧𝑛.  

TABEL I.    ALGORITM FOR THE RECURSIVE SEQUENTIAL DETECTOR 

Step Action 

Initialization 𝑛 = 0, choose 𝛼 and 𝛽,  determine the first row 

of 𝐑𝑟𝑛 and 𝜎2,  𝑆0 = 0, and 𝐑0
−1 could be an 

empty matrix. 

1) Determine 𝐴 dan 𝐵 from (9) 

Repeat: 

2) Take a sample: 𝑛 = 𝑛 + 1 

3) Calculate the mean 𝜇𝑛  by using (23), the 

variance 𝑘𝑛 by (18), det (𝐑𝑛) by (19) and 𝐑𝑛
−1 

by (17) 

4) Calculate the increment of the log-likelihood 

ratio 𝑧𝑛 using (24) 

5) Update the test statistic 𝑆𝑛 = 𝑆𝑛−1 + 𝑧𝑛                            

Until 𝑆𝑛 ≥ log(𝐴) or 𝑆𝑛 ≤ log(𝐵) 
6) If 𝑆𝑛 ≥ log(𝐴), accept  ℋ1 (signal present), or 

If 𝑆𝑛 ≤ log(𝐵), accept  ℋ0 (signal absent) 

The algorithm for the recursive sequential detector can be 

seen in Table I. Note that the recursive method does not use 

approximation as in non-recursive sequential detector [29], so 

the performance in terms of probability of error and average 

sample number is expected to be the same as the conventional 

sequential detector. This is confirmed by simulations in section 

III. 

C. Simulation Method 

Simulation is used to measure the performance of the 

proposed recursive sequential detector. We compare the 

proposed method to the conventional sequential detector which 

directly calculates the inverse and determinant of the 

covariance matrix in (11) using Lower-Upper (LU) 

Decomposition and Gauss-Jordan elimination, respectively. 

The second reference that we use to compare to is the non-

recursive sequential detector [29]. 

As the metrics, we use the actual probabilities of false alarm 

𝑃𝑓  and miss detection 𝑃𝑚 , with the nominal probabilities of 

false alarm α and the nominal probability of miss detection β. 

Both are set to be equal ( α =  β)  with values of 𝛼, 𝛽 =
10−2, 5 × 10−2, and 10−1. Another metric is the average 

sample number (ASN), under  ℋ1 when signal present (ASN1) 



64 Jurnal Teknik Elektro Vol. 15 No. 2 2023 

and under ℋ0  when signal absent ( ASN0 ). The overall 

performance is calculated based on 104 Monte-Carlo runs. The 

average received signal power P̅r is assumed to be constant, so 

the SNR (in dB) is defined as 

𝑆𝑁𝑅 = 10 log10
𝑃̅𝑟
𝜎2
= 10 log10

[𝐑𝑟𝑛]𝑖𝑖
𝜎2

,

∀𝑖 = 1,2, … 

(25) 

with the noise power 𝜎2 = 1. The signal covariance matrix can 

be rewritten as 

𝐑𝑛 = 𝛾Σ𝑟 + 𝐈𝑛, (26) 

with 𝛾 = 10
𝑆𝑁𝑅
10   and Σ𝑟  is normalized signal covariance matrix. 

For all simulations, Σ𝑟  is assumed to be 

  Σ𝑟 =

(

  
 

1 
−1

⋯ 
−𝑛+2


−𝑛+1


1

1 
−1

⋯ 
−𝑛+2

⋮ 
1

1 ⋱ ⋮


𝑛−2

⋮ ⋱ ⋱ 
−1


𝑛−1


𝑛−2

⋯ 
1

1

   

)

  
 
, (27) 

where 
1
= 

−1
= 0,6, 

2
= 

−2
= 0,4, 

3
= 

−3
= 0,2,  and 


𝑖
= 0 for |𝑖| > 3. 

Performance evaluation using simulation has the following 

objectives: 

• Demonstrating the superiority of the recursive 

sequential detector over the quadrature detector in terms 

of the required average sample number to achieve the 

same target detection performance. 

• Evaluating how much the performance of the recursive 

sequential detector differ from the non-recursive 

sequential detector. 

• Verifying that the proposed recursive sequential 

detector has the same performances on 𝑃𝑓 , 𝑃𝑚 and ASN 

as the conventional sequential detector but it enjoys 

having much smaller computational complexities. 

 

III. RESULTS AND DISCUSSION 

This section covers the simulation results using the setup 

described in the previous section. The ASN is utilized as a 

performance indicator to show that the proposed recursive 

sequential detector uses fewer samples than the quadrature 

detector, resulting in a faster detection process. The simulation 

results on the probabilities of false alarm and miss detection are 

then reviewed to demonstrate that the proposed detector can 

minimize computational complexity while maintaining these 

two performance criteria. This section concludes with a 

quantification of the computational complexity achievable by 

the proposed detector when compared to the existing detectors.   

A. Average Sample Number and Probability of Error 

Figure 1 shows the advantages of using a recursive 

sequential detector over a quadrature detector regarding the 

average sample number to achieve the same target error 

probabilities of 𝛼 and 𝛽. For the overall nominal probabilities 

of 𝛼 and 𝛽 (where 𝛼 = 𝛽) and overall SNR ranges, the ASNs 

of the recursive sequential detector are significantly smaller 

(about half) than that of the quadrature detector. The gap 

between the two becomes more pronounced for lower SNRs 

since the sample number required by the quadrature detector 

rises exponentially faster than the recursive sequential detector. 

In some realizations, the sequential detector may require more 

samples than the quadrature detector, but the sequential 

detector requires much smaller on average. Note that the 

average sample number in Figure 1 is under ℋ1 (ASN1). The 

use of a recursive sequential detector is thus recommended over 

the quadrature detector, as it will increase the agility of the 

system in detecting the desired signal. 

 

Figure 1.  Required sample numbers for the sequential and quadrature 

detectors to achieve nominal α dan β 

Table II shows the performances of the recursive sequential 

detector, the conventional sequential detector, and the non-

recursive sequential detector. Based on the table, the three 

detectors have not significantly different performances. Some 

key points that can be highlighted from the table are: 

1. The recursive sequential detector has the same actual 

decision errors of 𝑃𝑓 and 𝑃𝑚 as the conventional sequential 

detector. The non-recursive sequential detector is slightly 

larger 𝑃𝑓   and slightly smaller 𝑃𝑚  than the recursive 

sequential detector. 

2. The recursive sequential detector has the same average 

sample numbers, ASN1 and ASN0 , as the conventional 

sequential detector. Whereas the non-recursive sequential 

detector has a slightly smaller ASN1 (maximum 4.4 average 

samples at a low SNR -5 dB) and a slightly larger ASN0 

(maximum 2.8 average samples) than the recursive 

sequential detector. 

3. For each nominal probabilities of 𝛼 and 𝛽 (where 𝛼 = 𝛽) 

and over all SNR ranges, the three sequential detectors 

generally satisfy inequality (10). Except for the non-

recursive sequential detector at SNR 0 and 5 dB, 𝑃𝑓 is larger 

than the target value. As an example, for 𝛼 = 𝛽 = 0,01 and 

SNR = 5 dB, the three sequential detectors should satisfy 

the inequality 𝑃𝑓 ≤ 𝛼/(1 − 𝛽) = 0.01/(1 − 0.01) =

0.0101 . However, the non-recursive sequential detector 

does not satisfy the inequality, i.e., 𝑃𝑓 = 0.0659 >  0.0101. 

The difference in performance between recursive and non-

recursive sequential detectors occurs due to the different 

approaches for reducing the complexity of calculating the 

invers and determinant of the signal covariance matrix 𝐑𝑛.  In 

the non-recursive method, 𝐑𝑛  is first approximated by a 

circular matrix 𝐂𝑛,  which then leads to reduction of 

computational complexities for calculating the invers and 

determinant [24]. In contrast, the recursive method does not use 

an approximation, but we derive such that the calculation of the 

invers and determinant of the covariance matrix can be 

recursively implemented.  
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Figure 2.  log(det(𝐑𝑛)) as the sample number 𝑛 increasing, (conventional 

and recursive sequential entirely overlap) 

Figures 2, 3, and 4 illustrate the consequences of having 

different approaches in the recursive and non-recursive 

sequential detectors. Note that, in these figures, the graphs for 

the conventional sequential detector and the recursive 

sequential detector overlap entirely, which might reduce their 

visibility.  

Figure 2 shows the calculation of log(det(𝐑𝑛))   as the 

sample number 𝑛  increases, for the recursive, conventional, 

and non-recursive sequential detectors. The values for the 

recursive and the conventional sequential detectors completely 

overlap as we expected, and the non-recursive sequential 

detector has slightly different values from the two others and 

becomes unnoticeable for very small SNR =  −5 dB. 

The way we calculate the inverse and determinants of the 

covariance matrix  𝐑𝑛  will also impact the calculation of the 

log-likelihood ratio 𝑆𝑛 . Figure 3 illustrates an instance of 

trajectories of the log-likelihood ratio 𝑆𝑛  as a function of 

sample number 𝑛 under ℋ1 with SNR = -5 dB. The recursive 

and conventional sequential detectors have overlapped 

trajectories and the same stopping times 𝑁𝑠 = 58. However, 

the trajectory for the non-recursive sequential detector is 

different, with the stopping time 𝑁𝑠 = 56, producing different 

average sample numbers. Meanwhile, the three sequential 

detectors make correct decisions to favour ℋ1 since they have 

the log-likelihood ratios 𝑆𝑛 ≥  log(𝐴)  at the stopping times. 

This condition occurs in most of the 𝑆𝑛 trajectories. Thus, all 

three detectors satisfy the inequality of the actual probability of 

miss detection 𝑃𝑚 in (10) for each 𝛼 = 𝛽, as shown in Table II.  

Figure 4 illustrates the trajectories of the log-likelihood 

ratio 𝑆𝑛 as the sample number 𝑛 increases under ℋ0. Figure 4.a 

shows for SNR = -5 dB and Figure 4.b for SNR = 5 dB. The 

figures depict the recursive sequential detector has trajectories 

completely overlap with the conventional sequential detector, 

with equal stopping times at 𝑛 = 41 for SNR = -5 dB and at 

𝑛 = 11  for SNR = 5 dB.  In addition, the recursive and 

conventional sequential detectors produce correct decisions 

under ℋ0  for both SNRs since they have the log-likelihood 

ratios 𝑆𝑛 ≤  log(𝐵)  at the stopping times. This confirms the 

results in Table II which read that the performance of the 

recursive sequential detector is equal to the conventional 

sequential detector for the entire scenario.  

 

Figure 3.  Trajectories for the log-likelihood ratio 𝑆𝑛 as the sample number  𝑛 

increasing under ℋ1 (SNR = -5 dB, 𝛼 = 𝛽 = 0.1), (conventional and 

recursive sequential entirely overlap) 

TABEL II.   PERFOMANCES OF RECURSIVE SEQUENTIAL DETECTOR (D-R), CONVENTIONAL SEQUENTIAL DETECTOR (D-D), AND  NON-RECURSIVE 

SEQUENTIAL DETECTOR (D-N) 

Performance 

Metrics 

SNR = -5 dB SNR = 0 dB SNR = 5 dB 

𝜶, 𝜷
=  𝟏𝟎−𝟐 

𝜶, 𝜷
=  𝟓𝒙𝟏𝟎−𝟐 

𝜶, 𝜷
=  𝟏𝟎−𝟏 

𝜶, 𝜷
=  𝟏𝟎−𝟐 

𝜶, 𝜷
=  𝟓𝒙𝟏𝟎−𝟐 

𝜶, 𝜷
=  𝟏𝟎−𝟏 

𝜶, 𝜷
=  𝟏𝟎−𝟐 

𝜶, 𝜷
=  𝟓𝒙𝟏𝟎−𝟐 

𝜶,𝜷
=  𝟏𝟎−𝟏 

𝑷𝒇 D-R 5.5 x 10-3 3.2 x 10-2 6.8 x 10-2 4.7 x 10-3 2.4 x 10-2 5.1 x 10-2 2.1 x 10-3 1.2 x 10-2 2.4 x 10-2 

D-D 5.5 x 10-3 3.2 x 10-2 6.8 x 10-2 4.7 x 10-3 2.4 x 10-2 5.1 x 10-2 2.1 x 10-3 1.2 x 10-2 2.4 x 10-2 

D-N 8.0 x 10-3 4.2 x 10-2 8.4 x 10-2 1.7 x 10-2 6.2 x 10-2 1.0 x 10-1 6.6 x 10-2 1.3 x 10-1 1.6 x 10-1 

𝑷𝒎 D-R 8.5 x 10-3 4.6 x 10-2 9.3 x 10-2 8.6 x 10-3 4.5 x 10-2 8.6 x 10-2 7.8 x 10-3 3.4 x 10-2 7.6 x 10-2 

D-D 8.5 x 10-3 4.6 x 10-2 9.3 x 10-2 8.6 x 10-3 4.5 x 10-2 8.6 x 10-2 7.8 x 10-3 3.4 x 10-2 7.6 x 10-2 

D-N 7.5 x 10-3 4.1 x 10-2 8.4 x 10-2 7.3 x 10-3 3.6 x 10-2 6.9 x 10-2 3.3 x 10-3 1.8 x 10-2 3.6 x 10-2 

𝐀𝐒𝐍𝟏 D-R 73.8 46.7 33.5 15.4 10.5 8.2 4.8 3.6 3.0 

D-D 73.8 46.7 33.5 15.4 10.5 8.2 4.8 3.6 3.0 

D-N 69.4 44.0 31.7 13.4 9.3 7.4 4.1 3.4 3.1 

𝐀𝐒𝐍𝟎 D-R 98.7 60.4 41.8 25.0 15.6 11.3 8.9 5.8 4.3 

D-D 98.7 60.4 41.8 25.0 15.6 11.3 8.9 5.8 4.3 

D-N 101.5 61.5 42.3 26.2 16.0 11.5 9.8 6.3 4.9 
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(a) 

 
(b) 

Figure 4.  Trajectories for the log-likelihood ratio 𝑆𝑛 as the sample number  𝑛 

increasing under ℋ0: (a) SNR = -5 dB and (b) SNR = 5 dB, (conventional and 

recursive sequential entirely overlap) 

The non-recursive sequential detector produces different 

trajectories 𝑆𝑛 with the other two detectors. When the SNR is 

as small as -5 dB, the difference is not significant (<0.5 scale) 

as shown in Figure 4.a. However, when the SNR is as large as 

5 dB, Figure 4.b shows that the non-recursive sequential 

detector has a very large trajectory gap which leads to false 

alarms. The phenomenon is more frequent for the non-recursive 

sequential detector, and it explains the reason that the actual 

probability of false alarm 𝑃𝑓 does not satisfy inequality (10) for 

large SNR, such as 0 and 5 dB. To summarize, the Figures 2 

and 3 provide the arguments for the key points 1 and 2 above, 

and Figure 4 for the key point 3. 

B. Computational Complexity 

To know the reduction in computational complexity offered 

by the recursive sequential detector, we can compare it with the 

conventional sequential detector that directly computes the 

inversion of the covariance matrix 𝐑𝑛
−1  using Gauss-Jordan 

elimination and the determinant of the covariance matrix 

det(𝐑𝑛) using Lower-Upper (LU) Decomposition. Table III 

shows the order of complexity required for one iteration for the 

three sequential detectors. 

The non-recursive sequential detector can significantly 

reduce the computational complexity of matrix inversion 

because it only needs to calculate one row of the invers matrix 

using FFT [29]. This cannot be obtained in the recursive 

sequential detector. A significant reduction is achieved by the 

recursive sequential detector when it calculates matrix 

multiplication, in which the non-recursive and the conventional 

sequential detectors have failed to achieve. Another advantage 

of using the recursive method is that there is no need to compute 

the determinant of the covariance matrix det(𝐑𝑛) since it has 

been replaced by faster calculation of 𝑘𝑛 using (18). 

To summarize, the recursive sequential detector has a lower 

computational complexity than the conventional one. However, 

the former maintains the same error probability and average 

sample number as the later. The recursive sequential detector 

has comparable computational complexities to the non-

recursive sequential detector, but the former has better 

probabilities of false alarm than the latter. In terms of the 

probability of miss-detection, they both meet the target 

requirements. The three sequential detectors have no significant 

difference in the average sample numbers required to achieve 

the target probabilities of error under ℋ1 as well as under ℋ0.  

These facts proof that the recursive sequential detector is a 

reliable alternative to use under correlated observations, 

particularly for the applications requiring high detection agility, 

such as in radar and cognitive radio. Nevertheless, the three 

detectors studied in this paper are based on simple hypotheses 

testing (known parameters). Our future work will derive the 

methods based on composite hypothesis testing, which are 

closer to the actual environment and might include recursive 

and non-recursive approaches. 

IV.  CONCLUSION 

This paper presents a recursive method in sequential 

detector with the aim of reducing computational complexity 

under correlated observations. The recursive sequential 

detector derived based on the chain rule of probability has much 

lower computational complexities than the conventional 

sequential detector. At the same time, it still maintains equal 

average sample numbers and error probabilities. Moreover, the 

recursive sequential detector has comparable computational 

complexities to the non-recursive sequential detector with the 

advantage of having better probabilities of false alarm. Overall, 

the proposed recursive sequential detector offers more efficient 

solutions under correlated observations than the other two 

detectors. The three detectors investigated in this study rely on 

simple hypothesis testing. Our future work will construct 

methods based on composite hypothesis testing that are more 

relevant to the actual world, which may include both recursive 

and non-recursive approaches. 

  

TABEL III.   BIG-O NOTATION (𝒪) TO REPRESENT COMPUTATIONAL COMPLEXITIES FOR SEQUENTIAL DETECTORS 

Calculation Conventional Non-Recursive 
Recursive 

(proposed method) 

Matrix Inverse 𝐑𝑛
−1 Gauss-Jordan: 𝒪(𝑛3) 𝒪 (𝑛 log(𝑛)) Eq. 17: 𝒪(𝑛3) 

Matrix Multiplication 𝒪(𝑛3) 𝒪(𝑛3) Eq. (18) & (23): 𝒪(𝑛2) 

Matrix Determinant, det(𝐑𝑛) LU − Decomp: 𝒪(𝑛3) 𝒪(1) Unnecessary 
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