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Abstract— This study addresses the critical challenge of Diabetic Retinopathy (DR) detection and severity 

grading, aiming to advance the field of medical image analysis. The research problem focuses on the need for 
an accurate and efficient model to discern DR conditions, thereby facilitating early diagnosis and intervention. 
Employing a Convolutional Neural Network (CNN), our methodology is developed to strike a balance between 
precision and computational efficiency, a pivotal aspect in the context of healthcare applications.  The 
research leverages the APTOS 2019 dataset, a comprehensive collection of fundus photographs, to evaluate 

the efficacy of our proposed model. The dataset allows for a thorough investigation into the model's 
performance in binary-class and multi-class classifications, providing a robust foundation for analysis.  The 
most important result of our study manifests in the achieved accuracy rates of 98.67% and 87.81% for binary-
class and multi-class classifications, respectively. These outcomes underscore the model's reliability and 
innovation, surpassing established machine learning algorithms and affirming its potential as a valuable tool 
for early DR detection and severity assessment.  In conclusion, the study marks a significant advancement in 
leveraging deep learning for ophthalmic diagnoses, particularly in the nuanced landscape of DR. The 
implications of our findings extend to the broader realm of AI-driven healthcare solutions, presenting 
opportunities for enhanced clinical practices and early intervention strategies. Future research endeavors 
could explore further refinements to the model, considering additional datasets and collaborating with 
healthcare professionals for real-world validation, ensuring the continued progress of AI applications in the 
medical domain. 
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I. INTRODUCTION 

Diabetic Retinopathy (DR) is a condition that affects the 

blood vessels in the retina due to poor blood sugar control [1] . 

It is a complication of diabetes mellitus and is the leading cause 

of blindness [2]. The disease is characterized by damage to the 

blood vessels in the retina, which can result in vision loss [3]. 

It is caused by chronic effects of diabetes mellitus and is 

considered an inflammatory, neuro-vascular complication [4]. 

The condition can be prevented or treated if identified in its 

early stages [5]. Early detection and treatment are crucial to 

address neurovascular damage before clinical microvascular 

damage occurs. DR can be diagnosed using specific algorithms 

and neural networks that analyze retinal images. Timely 

monitoring and diagnosis of DR can help prevent vision loss 

and improve patient outcomes. 

Deep learning has shown promise in the detection and 

classification of DR [6]. Various deep learning models, such as 

DenseNet-121, VGG16, and MobileNetV2, have been used for 

this purpose [7]–[9]. These models have been trained and tested 

on publicly available datasets, such as the APTOS 2019 

Blindness Detection Kaggle Dataset [10]. Data augmentation 

techniques, such as Enhanced Super-resolution Generative 

Adversarial Networks (ESRGAN) and Histogram Equalization 

(HIST), have been employed to enhance image quality and 

balance imbalanced datasets. These methods have the potential 

to assist ophthalmologists in the early detection and diagnosis 

of DR, leading to timely treatment and reduced risk of vision 

loss. 
Deep learning research for DR detection with the APTOS 

2019 dataset has identified several shortcomings that need 

improvement. These include imbalanced datasets, inconsistent 

annotations, limited sample images, inappropriate performance 

evaluation metrics, and the high cost of large annotated datasets 

[7], [11]. The imbalanced image class distribution in the 

APTOS 2019 dataset has been addressed through appropriate 

balancing techniques [12]. Furthermore, the accuracy of the 

models used for DR detection and classification needs 

improvement, with the hybrid network achieving an accuracy 

of 79.50% and the DenseNet 121 model achieving an accuracy 

of 97.30% [13]. The use of deep learning techniques, such as 

Convolutional Neural Networks (CNNs) and transfer learning, 

has shown promise in simplifying the detection step and 

improving the accuracy of DR diagnosis [14]. However, further 

research is needed to overcome these shortcomings and 

enhance the performance of deep learning models for DR 

detection with the APTOS 2019 dataset. 
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To bridge these gaps, this paper proposes a novel deep 

learning method based on CNNs with a custom architecture, 

allowing for easier fine-tuning and the incorporation of data 

augmentation techniques. This approach aims to overcome the 

shortcomings identified in previous research and enhance the 

overall performance of deep learning models for DR detection 

with the APTOS 2019 dataset. The motivation behind this study 

lies in the potential to improve early detection and diagnosis of 

DR, thereby reducing the risk of vision loss and ultimately 

benefiting patients with diabetes. 

The Methods section details our deep learning approach, the 

custom CNN architecture, and augmentation techniques for 

improved DR detection. In Results and Discussion, we evaluate 

the model's accuracy and clinical relevance. The Conclusion 

highlights our findings' impact and suggests research directions 

to better detect and diagnose DR, helping to prevent vision loss 

in diabetics. 

II. METHOD 

A. Dataset 

This investigation employs the APTOS 2019 dataset, 

available as an integral component of the Kaggle Blindness 

Detection Challenge – 2019 [15]. The dataset comprises 3662 

fundus eye photography images categorized into five severity 

levels of DR classes (0, 1, 2, 3, 4), sequentially named as 

Normal, Mild, Moderate, Severe, and Proliferative Diabetic 

Retinopathy (PDR). It is imperative to cite the aforementioned 

reference for further contextualization. The dataset 

encompasses 1805 images denoted as No DR, 370 images of 

Mild DR, 999 images portraying Moderate DR, 193 images 

representing Severe DR, and 295 images depicting Proliferative 

DR, as delineated in Table I. 

This research capitalizes on the rich diversity encapsulated 

within the APTOS 2019 dataset, specifically designed for the 

Kaggle Blindness Detection Challenge. The dataset's 

stratification into distinct severity levels of DR, ranging from 

Normal to Proliferative DR, offers a nuanced and 

comprehensive framework for model training and evaluation. 

The tabulated distribution of images across severity classes 

provides a clear snapshot of the dataset's composition, laying 

the foundation for an in-depth exploration into the intricate 

patterns characterizing different DR stages. Furthermore, the 

robustness of the research methodology hinges on the 

utilization of this meticulously curated dataset, ensuring a 

substantive and rigorous analysis of DR detection and severity 

assessment.      

TABLE I.    SUMMARY OF APTOS 2019 DATASET 

DR Classes Number of Instance 

Normal 1805 

Mild 370 

Moderate 999 

Severe 193 

PDR 295 

Total 3662 

B. Data Pre-Processing 

The DR dataset exhibits an imbalance, with 49% allocated 

to the No DR class, 8% to PDR, 5% to Severe, 27% to Moderate, 

and 10% to Mild, posing a potential risk of overfitting. To 

enhance the model's performance, refinement of the DR dataset 

is conducted through the implementation of Augmentation 

techniques for both the two-class and five-class scenarios. 

Additionally, all images are resized to 224×224 pixels as part 

of the preprocessing steps to ensure consistency and 

compatibility with the model architecture. Augmentation 

involves the adjustment of brightness and contrast, strategically 

employed to address potential bias and enrich the dataset. The 

outcomes of Augmentation for the two-class and five-class 

scenarios are presented in Table II. 

This strategic refinement aims to mitigate the imbalanced 

class distribution within the DR dataset, a common concern that 

could compromise the model's generalizability. Augmentation, 

specifically through brightness and contrast adjustments, serves 

as a nuanced technique to introduce diversity to the dataset, 

thus minimizing the risk of overfitting. The rationale behind 

this methodology stemmed from the acknowledgment that the 

quality of images profoundly influences the outcomes of 

detection, with fluctuations in brightness and contrast being 

prevalent in practical settings. Through systematic 

manipulation of these variables, our objective was to replicate 

a spectrum of environmental conditions and fortify the 

adaptability of our model to fluctuations in image quality. This 

augmentation procedure facilitated the expansion of our dataset, 

consequently enhancing the model's capacity for generalization. 

The augmentation outcomes, delineated in Table II, underscore 

the tangible impact of this method on enhancing the dataset's 

representativeness and, by extension, fortifying the robustness 

of the subsequent model. Additionally, we utilized 

augmentation three times to ensure balance across classes and 

to mitigate significant disparities in dataset size between classes. 

To enhance detection quality, we applied Gaussian blur to the 

images. This method aims to reduce noise and smooth out 

irrelevant details in the images, allowing the detection 

algorithm to focus on more significant features. Consequently, 

the use of Gaussian blur helps improve the precision and 

accuracy of detection in the processed images. 

TABLE II.   AUGMENTATION OUTCOMES FOR 2 AND 5-CLASSES 

CONFIGURATIONS 

DR 

Classes 

Original 

Sample 
2-classes 5-classes 

Normal 1805 2x Augmented Not Augmented 

Mild 370 3x Augmented 3x Augmented 

Moderate 999 Not Augmented Not Augmented 

Severe 193 3x Augmented 3x Augmented 

PDR 295 3x Augmented 3x Augmented 

C. CNN Architecture 

In recent times, the emergence of Deep Learning has 

significantly transformed various domains, particularly in the 

areas of pattern recognition and image processing. Deep 

Learning, renowned for its capacity to autonomously acquire 

layered representations of data, has become a formidable asset 

in addressing intricate challenges. Among the array of 

techniques within this framework, CNNs have emerged as a 

pivotal method, demonstrating impressive capabilities in 

extracting pertinent features from raw data, particularly in the 

domain of image analysis. In this investigation, we capitalize 

on the potential of CNNs to discern nuanced patterns within 

images. Through the utilization of CNNs, we not only enhance 

the precision and efficiency of our model but also uncover fresh 

perspectives that transcend conventional approaches. By 

meticulously scrutinizing CNN architectures and their 

application within our research domain, we underscore the 
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unique merits of Deep Learning, specifically CNNs, in 

propelling progress and offering comprehensive resolutions to 

complex issues. 

Within this investigation, the architecture of a CNN 

assumes the role of a discerning model dedicated to the 

identification of DR. Depicted in Figure 1, the intricate CNN 

architecture unfolds through a series of strategically 

orchestrated layers. This model, a CNN, is meticulously 

structured with sequential layers designed to systematically 

process intricate image data. Commencing the convolutional 

journey is the inaugural Conv2D layer boasting 32 filters of 

dimensions 3×3, invoking ReLU activation to adeptly discern 

intricate features embedded within the visual data. Significantly, 

this layer incorporates L2 regularization, employing a judicious 

coefficient of 0.001, to safeguard against potential overfitting. 

Subsequent to this, a MaxPooling2D layer with dimensions 2×2 

is introduced, serving the pivotal purpose of diminishing the 

spatial dimensions of the processed image. 

The convolutional cascade further unfolds through the 

incorporation of the second, third, and fourth Conv2D layers, 

each distinct in filter quantity and configuration, yet 

consistently adhering to the principles of ReLU activation and 

L2 regularization. Notably, every convolutional stratum is 

succeeded by a congruent MaxPooling2D layer, ensuring a 

seamless progression. Following this convolutional continuum, 

the images undergo a transformative shift, transmogrifying into 

one-dimensional vectors through the agency of the Flatten layer. 

This heralds the entrance of a subsequent Dense layer, boasting 

32 neurons and invoking ReLU activation to facilitate profound 

learning from the gleaned features. Culminating in the 

architectural design is the imposition of a Dropout layer, 

strategically set at a 0.5 dropout rate, serving as a prudent 

measure against overfitting. The model's denouement 

materializes in the form of a concluding Dense layer, featuring 

2 neurons and deploying softmax activation, thus effectuating 

the classification of images into the desired dual classes. This 

intricate and sophisticated CNN architecture stands as a 

testament to the meticulous approach undertaken in the realm 

of image classification. 

D. Detection Performance Evaluation 

In the evaluation stage, the meticulously crafted CNN 

model from the antecedent phase will undergo rigorous testing. 

This critical phase aims to furnish insights through the 

presentation of a confusion matrix, delineating pivotal metrics 

including accuracy, precision, recall, and F1-score. The 

scrutiny of these metrics serves as a comprehensive assessment, 

providing a nuanced understanding of the model's performance 

and its aptitude in discerning patterns within the dataset. This 

phase serves as a decisive juncture in gauging the efficacy of 

the CNN model, elucidating its proficiency in classification 

tasks and contributing to the elucidation of its practical viability. 

1) Accuracy 

The metric of accuracy serves as an indicator of the model's 

precision in classification, characterized by Equation (1).  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝑇𝑁+𝑇𝑃+𝐹𝑁
  () 

2) Precision 

Precision serves as a metric to elucidate the precision 

exhibited by a model in forecasting positive events amidst a 

sequence of predictive endeavors as indicated by Equation (2). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
 () 

3) Recall 

In tandem with precision and accuracy metrics, a 

comprehensive evaluation of a system's efficacy necessitates 

the consideration of recall or its sensitivity to a specific class, 

as elucidated by Equation (3): 

  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
  () 

4) F1-Score 

The F1-Score, or F-Measure, is an evaluation metric that 

combines precision and recall into a single value as indicated 

by Equation (4). In the context of classification, the F1-Score 

provides a comprehensive overview of the balance between a 

model's ability to make accurate positive predictions (precision) 

and its ability to identify all true positive cases (recall). By 

amalgamating these two metrics, the F1-Score offers a holistic 

measure of the overall quality of the model, with the highest 

value reflecting an optimal balance between precision and 

recall. Therefore, the F1-Score is particularly valuable in 

situations where the need to optimize both precision and recall 

is equally critical, such as in disease detection or classifying 

imbalanced data scenarios. 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

Figure 1. The proposed CNN architecture 
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III. RESULTS AND DISCUSSION  

A. Two-classes Classification 

In this study, a CNN model has been successfully developed 

and tested to classify fundus images into two categories: normal 

and DR. The model underwent training on a significantly large 

dataset with optimized training parameters, including a test size 

of 0.15, Adam optimizer with a learning rate of 0.001, 75 

epochs, and a batch size of 32. 

The testing results revealed that the model achieved an 

accuracy rate of 98.67%, accompanied by precision and recall 

rates of 98.68% and 98.64%, respectively, and an F1-Score of 

98.66%. The Confusion Matrix presented in Table III illustrates 

minimal errors in the model's identification of normal and DR 

conditions, showcasing strong potential for early and accurate 

detection of DR in clinical applications. This underscores the 

model's robust performance and underscores its viability for 

clinical implementation in the realm of DR diagnosis. 

TABLE III.   THE RESULTS OF CONFUSION MATRIX FOR 2-CLASSES 

Predicted 
Actual 

Normal DR 

Normal 533 9 

DR 7 657 

Accuracy 98.67% 

Precision  98.68% 

Recall 98.64% 

F1-Score 98.66% 

The graphical representation of the CNN model's 

performance, as delineated in Figure 2, provides a nuanced 

insight into its efficacy in distinguishing between normal ocular 

conditions and instances of DR. During the initial epochs of 

training, the model displayed a commendable efficiency in 

adapting its weight parameters, as evidenced by the rapid 

descent of its loss function. This signifies a proficient learning 

process, where the model swiftly aligns itself with the inherent 

complexities of the dataset. Notably, this trend persevered until 

the loss approached a state of stability, indicating a careful 

convergence towards an optimal model configuration. 

 

Figure 2. Loss and accuracy in DR 2-classes classification 

Moreover, the discernible ascent in accuracy throughout the 

training process is a noteworthy observation. The model's 

ability to sharply improve its accuracy towards nearly flawless 

values, nearing the theoretical maximum of 100%, underscores 

its adeptness in correctly classifying instances of normal and 

DR conditions. The swift and consistent enhancement in 

accuracy, coupled with a steady reduction in loss, suggests that 

the model successfully captured pertinent patterns within the 

data. 

Importantly, the absence of signs of overfitting, as 

manifested by the flatlining of the loss curve in the latter epochs, 

is a crucial facet. This implies that the model's learning process 

was well-balanced, avoiding undue adaptation to the training 

data at the expense of generalizability. The plateau observed in 

the loss curve signifies a point of stability, further 

substantiating the model's potential for optimal learning and 

robust performance on previously unseen data. 

B. Five-Classes Classification 

Within the context of this investigation, a meticulously 

designed and rigorously tested CNN model has been developed 

to classify fundus images into five distinct categories: Normal, 

Mild, Moderate, Severe, and PDR. A crucial aspect of the 

model's development strategy involved thorough training on a 

comprehensive dataset. The training parameters, which were 

meticulously adjusted, included a test size ratio of 0.15, 

utilization of the Nadam optimizer with a learning rate of 0.001, 

a training duration of 75 epochs, and a batch size of 32. 

Importantly, the model demonstrates remarkable 

proficiency in accurately identifying various stages of 

retinopathy, as evidenced by its commendable performance 

metrics. The model achieves an accuracy rate of 87.81%, 

indicating its precision in making correct classifications. 

Additionally, the precision score of 86.60%, recall rate of 

86.08%, and F1-score of 86.30% collectively highlight the 

model's effectiveness in navigating the complexities of this 

intricate classification system. A comprehensive analysis of the 

classification outcomes for each specific class is meticulously 

provided in Table IV, offering a detailed understanding of the 

model's discriminative capabilities. 

The graphical representation of the model's training 

trajectory, spanning 67 epochs, offers valuable insights into the 

dynamic learning process, as depicted in Figure 3. Notably, the 

graph unveils an initial sharp descent in loss, transitioning into 

a more gradual descent, indicative of the model's convergence 

and sustained progression over time. Concurrently, accuracy 

experiences a noteworthy surge in the early stages, eventually 

reaching a stabilized state at elevated levels, albeit not 

achieving full saturation. This discernible pattern implies the 

model's adept parameter adaptation to the dataset, effectively 

assimilating crucial features from retinal imagery for precise 

DR classification. While the model's performance demonstrates 

considerable promise for medical diagnostic applications, 

prudent adjustments and additional validation endeavors may 

be imperative to mitigate cross-classification errors and fortify 

the predictive reliability. 

TABLE IV.   THE RESULTS OF THE CONFUSION MATRIX FOR 5-CLASSES. 

Predicted 
Actual 

Normal Mild Moderate Severe PDR 

Normal 344 6 9 0 2 

Mild 7 273 10 1 4 

Moderate 14 19 136 12 19 

Severe 0 1 11 134 9 

PDR 1 7 18 2 208 

Accuracy 87.81% 

Precision 86.60% 

Recall 86.08% 

F1-Score 86.30% 
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Figure 3. Loss and accuracy in 5-classes DR classification 

C. Discussions 

This research endeavors to draw a comprehensive 

comparison between our proposed methodology and 

established machine learning algorithms. Table V serves as a 

visual representation, delineating the nuances between 

antecedent studies and the innovative approach we put forth, all 

within the confines of a shared dataset. 

In this examination, we systematically evaluate the efficacy 

of our proposed method by placing it side by side with 

conventional machine learning algorithms that have found 

application in analogous studies. The intention is to discern the 

unique attributes and advancements that our methodology 

introduces to the field. Table V emerges as a succinct visual aid, 

elucidating the distinctive features and comparative 

performance metrics across various research endeavors. This 

juxtaposition not only contributes to the validation of our 

approach but also underscores its potential as a noteworthy 

augmentation within the broader landscape of machine learning 

applications. Moving beyond binary classification, Table VI 

showcases the robustness of our methodology in the more 

challenging multi-class setting, reflecting our model's 

proficiency in handling a nuanced classification landscape and 

its promising application in complex medical diagnostic tasks. 

TABLE V.   COMPARISON OF THE PROPOSED RESULTS WITH THE PREVIOUS 

RESEARCH FOR 2-CLASSES. 

Method Year Accuracy (%) 

Composite DNN [16] 2021 97.82 

Xception+VGG16+ DNN [17] 2020 97,92 

DenseNet121 [18] 2020 94.44 

VGG16 [19] 2021 97.05 

Supervised Contrastive learning [20] 2022 98.36 

This study 2023 98.67 

TABLE VI.   COMPARISON OF THE PROPOSED RESULTS WITH THE PREVIOUS 

RESEARCH FOR 5-CLASSES 

Method Year Accuracy (%) 

Composite DNN [16] 2021 82,54 

Xception+VGG16+DNN [17] 2020 80,96 

Deep Convolution Features+SVM [21] 2020 77.90 

Inception-ResNet-v2+CNN [22] 2021 82.18 

VGG16 [19] 2021 75.50 

Supervised Contrastive Learning [20] 2022 84.36 

This Study 2023 87.81 

In the comparative analysis of binary-class classification for 

the identification of DR within the APTOS 2019 dataset, 

findings reveal that the method propounded in 2023, denoted as 

"our method," achieved an apex accuracy of 98.67%. This 

supremacy is conspicuous when contrasted with antecedent 

investigations such as Xception+VGG16+DNN [17]  97.92%, 

DenseNet121 [18] 94.44%, Composite DNN [16] 97.82%, and 

VGG16 [19] 97.05%. Notably, the accuracy of our method 

surpasses that of the study conducted by Supervised 

Contrastive learning [20] in 2022, registering at 98.36%. This 

nuanced advancement underscores the superior discriminative 

prowess of our proposed methodology in effecting the 

categorization of ocular states into the dichotomy of Normal 

and DR, vis-à-vis antecedent methodologies. 

Within the intricate domain of multi-class classification 

pertaining to the nuanced stratification of DR severity, our 

proposed method in 2023 attains a commendable accuracy of 

87.81%. This substantial achievement markedly transcends the 

outcomes of prior investigations including Deep Convolution 

Features+ SVM [21] 77.90%, Xception+VGG16+DNN [17] 

80.96%, VGG16 [19] 75.50%, and Supervised Contrastive 

Learning [20] 84.36%. Although Inception-ResNet-v2+CNN 

[22] study in 2021 yielded an accuracy of 82.18%, our method 

exhibits a sustained trajectory of improvement. The pinnacle 

accuracy achieved by our method accentuates the model's 

proficiency in discerning ocular conditions across a spectrum 

of severity levels, thereby bearing consequential implications 

for clinical praxis. 

The consistent augmentation in performance, particularly 

discernible in the realm of multi-class classification, positions 

the proposed method as an invaluable contributory milestone in 

the evolution of DR detection methodologies [23]. These 

empirical findings substantiate the methodological reliability 

and discriminatory acuity of the proposed framework in the 

context of DR detection utilizing the APTOS 2019 dataset [24]. 

The inference derived is that this methodological innovation 

may serve as a seminal underpinning for subsequent strides in 

the diagnosis and therapeutic intervention for ocular 

pathologies concomitant with DR [25]. 

In the domain of DR detection, our approach stands as a 

pioneering instance of deep learning methodology, 

characterized by a specifically tailored CNN architecture. This 

unique architecture, deliberately configured to find an 

equilibrium between effectiveness and computational 

efficiency [26], played a pivotal role in achieving a noteworthy 

accuracy of 98.67%. This surpasses the performance of 

established methodologies in binary-class classification, 

underscoring the efficacy of a meticulously designed CNN 

architecture in distinguishing between Normal and DR 

conditions [27]. 

To contend with imbalanced class classification challenges, 

our method strategically integrates advanced data 

augmentation techniques. Notably, the utilization of contrast 

and brightness adjustments, chosen for their ability to mimic 

real-world image variations, contributes to the model's 

adaptability [28]. Furthermore, preprocessing methodologies, 

including Gaussian blurring, enhance the clarity of retinal 

objects, thereby amplifying the model's discernment 

capabilities. This comprehensive methodological framework 

has yielded a commendable accuracy of 87.81% in the nuanced 

landscape of multi-class DR severity classification, surpassing 

precedent studies. 

Our approach succeeds through the intelligent integration of 

a bespoke CNN architecture—balancing accuracy and 

efficiency—with advanced data preprocessing for real-world 

applicability [29]. Together, these elements enhance robustness 

in binary and multi-class DR classification [30], evidencing our 

method's effectiveness and conceptual depth. 
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IV. CONCLUSION 

In conclusion, our study demonstrates a significant leap in 

DR detection and severity grading with a CNN model, 

achieving remarkable accuracy rates of 98.67% in binary 

classifications and 87.81% in multi-class scenarios, 

outperforming conventional machine learning approaches. This 

advancement is bolstered by effective data augmentation and 

preprocessing strategies, enhancing the model's adaptability 

and precision in medical imaging contexts. However, the 

challenge of model interpretability remains, suggesting a need 

for future research focused on improving transparency through 

methods like attention mechanisms and feature visualization. 

Future studies should also explore refining the CNN 

architecture, expanding data augmentation techniques, and 

extending applications to diverse datasets, alongside real-world 

validation with healthcare professionals. Our findings advocate 

for the potential of deep learning in ophthalmology, setting the 

stage for further advancements in AI-driven diagnostic tools 

that could revolutionize clinical practices and patient care. 
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